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System of linear equations

Example 1
{xl + 7xp = =57 (1)
12x1 4+ 3x, = 45 (2)
Step 1: £ x (2) = 4x + xo = 15 (2%)
Step 2: 4 x (1) = 4x1 + 28xp = —228 (1%)

Step 3: (1x) — (2%) = 27x; = —243
Step 4: xo = —9
Step 5: x1 =6

X1 1 7| x| |57
Let X= [XJ ,then we can get [12 3] [Xz] = [45}

1 7 : -57
12 3 : 45



Elementary row operations and row equivalent of matrices

Definition 2
The following operations on the M x N matrix A, are elementary
row operations:

1. multiply a row of A by a non-zero number.
2. interchange two rows.

3. replace a row by that row plus ¢ times another row.
where ¢ is a non-zero number

Definition 3

Suppose A and B are M x N matrices. The matrix B is obtained
from A by a finite sequence of elementary row operations, the B
and A are equivalent.



Elementary row operations and row equivalent of matrices

Lemma 4
If A and B are equivalent, then AX =0 and BX = 0 have the same

solutions.

Proof.

Operations 1. and 2., clearly true

Let a,, be the mt" row of A, Suppose that row m is replaced by
row m plus c times k, c# 0, k # m.

AX=0— SN amnXa =0 and SN aknXn = 0, 50 that

Y one1(@mnXn + X akn)Xn =D 1 amnXn + X > 1 aknXn = 0.
If BX=0, the "N a,,X, = 0 for all / # m.

0= Z,’)’Zl(amn + ¢ X agn)Xm = ZnNzl amnXn + ¢ X ZQI:1 aknXn
=N amnX, =0 O



Elementary row operations and row equivalent of matrices

Let A be an M x N matrix, X be an N dimension vector and Y be
an M dimension vector. The solutions of equation AX = Y can be
obtained from elementary row operations from [A Y]

Definition 5
A matrix B is row reduced if
(1) the first non-zero entry in any row is 1.

(2) each column that contains the first non-zero entry of
some row has all its other entries equal to 0.

Example 6

= O O
O O =

4
0| is row reduced
3



Elementary row operations and row equivalent of matrices

Definition 7
A matrix is row reduced echelon matrix if

(1) it is row reduced
(2) any row of zeros lies below all non-zero rows

(3) if the non-zero rows are 1 through r, and the leading
non-zero entry of row m is in column n,, for
m=1---r.

Example 8

o O
o = O
o b~ W



Elementary row operations and row equivalent of matrices

Lemma 9
Every matrix is row equivalent to a row reduced echelon matrix.

Example 10
3 21 3 21 3 01
6 4 21— 100 0| — 1|0 0 Of —
6 8 5 6 8 5 0 4 3
2 1 2 1 1
00 0f—1|01 3|—1]01 3%
01 3 000 000



Elementary row operations and row equivalent of matrices

Remark 11
If B is row-reduced echelon matrix, the solutions of BX =0 are
obvious.
Example 12

1 0 3

B=|(0 1 4

0 0O
Let x3 = a=— x» = —4a and x; = —3a.
Theorem 13

If Ais an M x N matrix such that M < N, then AX =0 has a
non-zero solution.



Scalar, vector and matrix

Some concepts

1. A scalar a is single number.

2. A vertor a is k x 1 list of numbers, typically arranged in a
column.

A vector a € R¥(Euclidean k-dimensional space).



Scalar, vector and matrix

Some concepts

3. A matrix A is a k x r rectangular array of numbers.

a1 a2 - dir
dp1 a2 -+ azr

A= . | =lal
akl ak2 cc dkr

By convention aj; refers to the i-th row, j-th column of A. If
r=1or k=1, then A becomes a vector.

4. A matrix can be written as a set of column vectors or a set of
row vectors.
A=la1 a -+ al, whereaj=[ay ay -+ a]

’

A:[al Qap v ak]/,where a}:[aﬂ ap - aj,]

5. A matrix is square if k=r.
6. A square matrix is symmetric if A= A’.



Scalar, vector and matrix

Some concepts
7. A square matrix is diagonal if and only if non-zero elements
appear on diagonal, i.e. aj; =0 if i # j.

8. A square matrix is upper diagonal if all elements below the
diagonal equal zero.

9. A square matrix is lower diagonal if all elements above the
diagonal equal zero.

10. The transpose of a matrix, denoted B=A', is obtained by
flipping the matrix on its diagonal.
a1 d21 -0 dkl
/ a2 a2 - ar
B=A =

air ar - akr



Scalar, vector and matrix

Some concepts

11. A partitioned matrix

Air A - Agr
A A oo Ag
Aa A - Ak

Ajj denote matrices, vectors and/or scalars.

12. An important diagonal matrix is the identity matrix, which
has all ones on the diagonal

I =
00 - 1

If Ais a k x rmatrix, then Al, = A and [[/A = A.



Scalar, vector and matrix

Matrix operations

an - air b11
A= B—
aky v akr b1
ann+bu - ar+ b cai
A+ B= : e cA=
akt + by 0 Akt by Caxl

Ais a k X r matrix, B is an r X s matrix, then

[AB]; = Z aipbp;

p=1

bkr

Cair

Cakr



Orthogonal vectors and orthogonalmatrix

Definition 14
Two vectors a, b are orthogonal if a b= 0, i.e. Zszl akby = 0.

Definition 15
Suppose A is a k x r matrix, k > r, its columns are orthogonal if

AA= .
A=la a - a]

A square matrix A is orthogonal if A'A = I.



Trace of matrix

Definition 16
The trace of a k x k square matrix A is the sum of its diagonal
elements

(A=Y ai

Trace is related to the concept degree of freedom™. Suppose we
regress Y on X, we can get ¥ = XB, it can be written as
Y = S(X)Y, where S(X) is a matrix that depends X.

“degree of freedom” = tr(S(X))

N

B=(XX)"1XY, then we can get ¥= X(XX)"1X Y and
S(X) = X(XX)71X.

tX(X X)"1X] = t](X X)X X] = tr]l] = k



Trace of matrix

Some properties of trace

1.

ok wnN

tr(cA)= ¢ tr(A)

tr(A)=tr(A)

tr(A+ B) = tr(A) + tr(B)
tr(IF) = k

tr(AB) = tr(BA)

tr(ABC) = tr(BCA) = tr( CAB)



Inverse of a matrix

Definition 17

A k x k matrix A has full rank, or is non-singular, if there is no

c # 0 such that Ac = 0. In this case, these exists a unique matrix
B such that AB = BA = I,. This matrix is called the inverse of A
and denoted A~1.

Some properties

(1) AA L= A1A=
(2) (A7) =(A)
(3) (AQ)t=cCc1tAa!



Inverse of a matrix

Some properties
(4) A+ O t=A1 AT Y It
Proof.

=(A+ QA Y (A + I
= (A+ O(CA L+ CcHAa) !
=(A+O((CA T+ AT
=(A+O(C+A) =1

(A+ QA+ 07t

(5) Woodbury Matrix Identity
(A+UCV)L=A"1 - A ly(C L+ vA~IU)-tvat
Special case: U=V =
(A+ O t=ATt-AY(CT+ A1) IATE



Inverse of a matrix

Proof.

(A+ UCV)(A+ UCV)™?
=(A+ UCV[A™ —A7ty(Cct + vATtu)tvaTh
=/—UY(Ct+ VAU tvaTl + ucvat
—UCVATtY(Ct + vATly) ATl
=/+ UCVA™! — (I+ UCVA Y U(C ! + vATlu)tva?
=I+ UCVA™! — (U+ UCVATtU)(Ct +vAatu)tvat
=/+ UCVA™l —uC(Ct+ VA lu)(Ct+ vATty)tval
=/+ UCVA™! — UCVA~!
=1

OJ



Inverse of a matrix

Computaton of matrix inverse
How to calculate A=1 ?

Example 18



Inverse of a matrix

Solution
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Inverse of a matrix

Example 19

Is A invertible?

Inversion of partitioned matrix
A BN [ EF! —ElBD
Cc D ~ |-DICE! F1

Where E= A— BD 1Cand F= D — CA~!B. E and F are Schur
complement.

El=(A-BD1O)t=A14+A1BF1CcA™!
F'=(D-CA'By'=D*'+D'CE'BD!



Proof.

Inverse of a matrix

/ 0 E! —E1BD!
D-1Cc | 0 D1




Inverse of a matrix

Proof.
I 0 : E-! —E1BD!
0 | i —D'CE? F1
Then we can get

A Bt [ E! —ElBD?
C D ~DlECt  Fl



