LINEAR ALGEBRA

Kuangyu Wen
Huazhong University of Science and Technology

July 21, 2021



Contents

Pseudoinverse of matrix

Determinant

Idempotent matrix and projection matrix
Positive definite matrices

Kronecker product and vec operation



Pseudoinverse of matrix

Generalized inverse(pseudoinverse) Moore-Penrose

Matrix inversion is defined for square matrix with full rank. For a
general matrix A:m x n, the matrix A is called pseudoinverse of
A if the following conditions hold.

1. AATA=A
2. ATAAT = AT
3. (AAT) = AAT
4. (ATA) = AtA
Note that At must be n x m.



Pseudoinverse of matrix

Theorem 1
Let A be a matrix. If its pseudoinverse exists, then it is unique.

Proof.
Suppose B and C are two pseudoinverse of A. Then we have

’ ’ !/ ’

AB = (ACA)B = (AC)(AB) = (AC)' (AB) = C'A'B'A
= C'(ABA) = C'A" = (AC) = AC

By the same way, we have

BA = B(ACA) = (BA)(CA) = (BA) (CA) = A'B'A'C

/

= (ABA)'C' =A'C' = (CA) =CA

Thus, B=BAB = (BA)B = (CA)B = C(AB) = CAC =C.
That is B =C.



Pseudoinverse of matrix

Example 2

Suppose A is a square matrix with full rank, then AT=?
At =A-1

Proof.

AAT = AA1 =1
ATA=A"1A=1
AATA=AATA=A

ATAAT = A7TAA- T = A1 = AT



Pseudoinverse of matrix

Example 3

a,

3
Let A=| | be an n x 1 column vector, then At=?

Qp

+ _ ! _ 1
AT = XA, where A = eSS

Proof.

AAT = MAA" = Naia;)nxn
ATA=DA=\NaZ+a2+---+a2)=1
AATA = A(ATA)=A

ATAAT = (ATA)AT = AT



Pseudoinverse of matrix

Example 4 )
Suppose an m X n matrix A = 0 8] where Bisanr x r
non-singular matrix. Then )
B=! 0
+ =
=% g

Proof.

I, 0 I, 0
+ _— |7 +A |t
AA _[0 0} AA_[O O]

AATA =A, ATAAT = AT



Pseudoinverse of matrix

Some basic properties of pseudoinversion
1. (AT)T=A
2. (A)r =(a%)
3. rank(A1) = rank(A)

Proof.

rank(A) = rank(AATA) < rank(AAT) < rank(A™)
rank(AT) = rank(ATAAT) < rank(AAT) < rank(A)

So, we have rank(A) = rank(A™)

Question
How to find a formula for pseudoinverse?



Pseudoinverse of matrix

Theorem 5
Suppose that an m x n matrix A has full column rank, that is
rank(A) = n, then A has a pseudoinverse.

AT =(A'A)1A
where AT is an n x m matrix.

Proof.
First, we need to show A’A is non-singular.
Suppose rank(ATA) < n, then A’Az = 0 has a non-zero solution
x. Then we have N _
xAAr=o0

(Az)'Az =0

Finally, we can get Az = 0 has non-zero solution, A is singular.
This is a contradiction. Ol



Pseudoinverse of matrix

Proof.

Second, we have

AAT = AA'A)TA
(AAT) = (A(A'A)TA) = A(A'A) A" = AAT
ATA = (A'A)TA'A =1
AATA=AT=A ATAAT = AT = AT

0J

When we regress Y on X, we have 3 = (X'X)"1X'Y, where X is
an n x k matrix and rank(X) = k. Then the 5 can be also
written as XY,



Pseudoinverse of matrix

Example 6
1 0
A=1|1 2
-1 3
Solution
We have rank(A) = 2, then
1 0
/ 11 -1 3 -1
bl e
02 3 |:1 3] -1 13
-1
/ / 3 -1 11 -1
+ —1A’ _
AT =(AA) A_[—l 13] 0 2 3]

13111 -1]_ ,[13 15 -10
%1 3/(02 3] ®[1 7 8



Pseudoinverse of matrix

Theorem 7

Suppose A is an m x n matrix, rank(A) = r. Then there exists an
m x r matrix F and an r x n matrix G such that A = FG and
rank(F) = rank(G) = r (Full rank Factorization)

Consider any r linearly independent columns of A. Let F be the
submatrix of A formed by these columns.
For each column Ay(k-th column of A), Ay = FGy, where Gy is a
vector of dimension 7.
GI[Gl G2 Gn] rXn
FG:F[Gl Go Gn] = [FGl FG, -'-FGn]

= [A1 A, An] =



Pseudoinverse of matrix

Example 8
1 2 3
A=14 5 6 rank(A) =2
7 8 9
12
F=14 5
7 8
1 2] 1] 1
FGi=A:1— |4 5[|G = |4 —>G1—[O]
|7 8] L7
[1 2] [2] 0
FGo=As — |4 5| Gy =15 —>G2:[1:|
|7 8] 18]




Pseudoinverse of matrix

Example 9

Theorem 10
For an arbitrary m x n matrix A, its pseudoinverse exists. If
A = FG is a full rank decomposition of A, then

AT =G'(GG)"YF'F)'F.



Pseudoinverse of matrix

Proof.
AAt = FGG (GG "Y(F'F)'F = F(F'F)~'F
ATA =G (GG Y(F'F)'FFG =G (GG)'G
AATA =F(F'F)"'FFG =FG = A
ATAAT = G(GGH e (GG H(F'F)IF
=G (GG ) YF'F)'F = AT

’



Determinant

Definition 11
Suppose A is a 2 X 2 matrix

A = |:a11 a12:|

Qo1 Qoo
then the determinant of A is

det(A) = ‘A| = Q11022 — Q12027

Example 12

=173

det(A)=-2x3-0x0=-6



Determinant

Some properties
Let A is a matrix which can be written as

A= [Al Az]
et [Al Ag} —I—det[ ’1 Ag}
et [A1 Az] +det[A; A)]
2]
]

2
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Determinant

Definition 13

Let A = [ai]-]nxm. The minor M;; of A is the determinant of the
matrix formed from A by removing the i-th row and j-th column.
The cofactor A;; = (—1)""/M;;, then

det(A) Z] 1 aiinj or det(A) = Z?:l aiinj

|

2 3 1 2
— _1)2+1 1)2+3
det(A) = 5 x (—1) ‘8 9‘+6 (-1) ‘7 .

— —5x (18—24) —6 x (8 — 14) = 30 + 36 = 66

Example 14

A=

o O N

1
5
7

O O W




Determinant

Example 15
Qqq

G2y

A=

Gny

0

427

Anz

Ann

det(A) = 11G22 - ** Qpp

a2
det(A) = a,, - (—1)11
an2

ass
= Q11022 ° (_1)1+1

Qng

Gnn

e = Q1 Qog vt

Ann



Determinant

Basic Properties of Determinants

o det]--- A;+ Ay, |=det]- Ay, -] +det[-- A,

° det[--~ ,cAi,--~]:C~det[~-- 7Ai7...]

° det[~~~ JAG, 7Aj7~~~]:—det[~-~ ,Aj,... ’Ai,...]
® det(l,) =1

® det[Ay,---,B,---,B,---]=0

® det[--- ,A;+cAj, -] =det[A, - A,]

° det[... ,07...]:0



Determinant

Determinant and elementary operations

If a square matrix A is transformed to another matrix A via an
elementary operation e, then
det(A) = q - det(A)
the number ¢ is
® ¢ = —1if eis a row switching.
® g = \if e is a row multiplication by a number A.

® g =1if eis a row replacement.



Determinant

Some Additional Properties
* det(A) = det(A")
o det( A) = o"det(A)
® det(AB) = det(A) - det( )
det(A™1) = (det(A)) ™

® det [A B] = det(D) - det(A — BD71C) if det(D) #0

C D
= det(A) - det(D — CA™IB) if det(A)#0
® det(A) # 0 if and only if A is non-singular.
¢ If A is orthogonal, then det(A) =1 or —1.



Determinant

Proof.
4AAY =T = det(A)det(A™') =1 — det(A™1) = (det(A))~?

5.
A B N A B
C D 0 D-CA™'B

A B} — det(A) - det(D — CA—1B)

det [C D

7.AA =1 (det(A))? =1 — det(A) = lor — 1



Idempotent matrices and projection matrix

Definition 16
A square matrix A is idempotent if AA=A

Definition 17
Let X be an n X k matrix, k < n, two projection matrices are

P =X(X'X)" X'
M=1-XXX)X

When we regress Y on X, we have 3 = (X'X)"!X'Y, then

= Xp
Y -

X(X'X)"'X'Y =PY

U Y=Y-PY=MY



Idempotent matrices and projection matrix

Some properties

P.P=XXX)"'XXXX)"X =xX(XX)"X' =P
M-M=(I-P)(I-P)=1-2P+PP=1-2P+P=1-P=
MM+P =1

M-P=(I-P)P=P—-PP=P—-P=0

Another useful property of P and M
tr(P) = tr(X(X'X)"1X) = tr(X'X)"'X'X) = tr(I;) = k
tr(M) =tr(I, —P)=tr(I,) —tr(P)=n—k



Positive Definite Matrices

Definition 18

We say a square matrix A is positive semi-definite if for all
non-zero c, ¢ Ac > 0. Sometimes, this is written as A > 0. We say
a square matrix A is positive definite if for all non-zero ¢, ¢ A

¢ > 0. This is written as A > 0.

Some properties

If A >0, then A is non-singular, A~! exists and A=! > 0.
For an n x k matrix X which has full column rank, then )0.¢
is symmetric and positive definite.

If A is symmetric, then A > 0 <= all its characteristic roots
are positive.

If A > 0, we can find B such that A = BB". We call B a
matrix square root of A. Note that B may not be unique.



Kronecker product and vec operation

Definition 19
Let A = [a;;] be an m x n matrix,

A:[a1 Ay - an],

where a; is the j-th column of A. The vec of A, denoted by
vec(A), is the mn x 1 vector.

aq

3

vec(A) =

an



Kronecker product and vec operation

Definition 20
Let Bsx+ be any matrix. The Kronecker product A and B, denoted
by A @ B, is the matrix

a,B a.B - a,,B
A®B = a5, B az.zB . am.lB
am B amB -+ B

Some properties
*e A+B)RC=ARC+BRC
* (ARB)-(CQD)=(AC)@(BD)(Mixed product property)
* AQBRC)=(AQB)KQC
* (A®B) =A'QB



Kronecker product and vec operation

Some properties
° ir(AQB) =tr(A)-tr(B)
° [f Aism xm, Bisn xn, we have
det(A @ B) = [det(A)]"[det(B)]™
e (ARB)1=A1RB!
e IfA>0, B>0 then AQB >0
* vec(ABC) = (C' ® A)vec(B)
= (I@/AB)vec(C)
=(CB ®I)vec(A)l
vec(AB) = (IQ) A)vec(B) = (B @ I)vec(A)
e tr(ABCD) = vec(D') (C' ® A)vec(B)



Kronecker product and vec operation

Example 21
The Kronecker product can be used to present linear equations in
which the unknowns are matrices

AX =B,
where X = [X; - Xi],B=[b, --- bg]. The equations
above can be reformulated as
A[X1 Xk] — [bl bk}
AX; =0, i AXj = by

!



Kronecker product and vec operation

Example 1.38
A 0 0] Xy b,
0 A 0 [X2 b,
0 0 Al | Xy b,
i
(IR A) - vee(X) = vee(B)
1

vec(AX) = vec(B)



Kronecker product and vec operation

Example 22

AX +XB=C
vec(AX + XiB) = vec(C)
vec(AX) + veci(XB) = vee(C)

(I® A)vec(X) + (Bi@ Nwee(X) = vee(C)
[(TQA) + (B @ D]vec(X) = vee(C)



Kronecker product and vec operation

Example 23

If all matrices are invertible, then

vece(X) = [B' ® A] tvec(C)
!
vece(X) = [(B') " ® A vec(C)



Matrix Calculus

Definition 24
X4

X2
Let X = | . | be k x 1 matrix and ¢g(X) = g(X1, Xo,---

X

R* — R. The vector derivative is
99(X)
X1
99(X)
8g(X) . 8X2
o — | -
99(X)
X,
99(X) _ [99(X) 99(X) .. 39(X)}
ax’ X4 X2 X},



Matrix Calculus

Some properties
o —(a X) =& (Xa)=

o L (AX)=A
. gx(x’AX) =(A+A)X
o Z(XAX) = A+ A

Some properties

Let A = [a;;] be an m x n matrix and g(A): R™*" — R. We
define

) = (e o)



Matrix Calculus

Some properties
Let A,,«xm be a non-singular matrix whose elements are functions
of the scale parameter «

all(a) CL12(04) te alm(a)
A= : : ’ :
ami(@)  ama(@) -+ amm(a)
OA—L —10A A —
then “5— = —A 1%A 1
Proof.
AA-L =1
oA~ OA A —1 __
A o +%2A71=0
og = A g



