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Pseudoinverse of matrix

Generalized inverse(pseudoinverse) Moore-Penrose

Matrix inversion is defined for square matrix with full rank. For a
general matrix A:m× n, the matrix A+ is called pseudoinverse of
A if the following conditions hold.

1. AA+A = A

2. A+AA+ = A+

3. (AA+)
′

= AA+

4. (A+A)
′

= A+A

Note that A+ must be n×m.



Pseudoinverse of matrix

Theorem 1
Let A be a matrix. If its pseudoinverse exists, then it is unique.

Proof.
Suppose B and C are two pseudoinverse of A. Then we have

AB = (ACA)B = (AC)(AB) = (AC)
′
(AB)

′
= C

′
A
′
B
′
A
′

= C
′
(ABA)

′
= C

′
A
′

= (AC)
′

= AC

By the same way, we have

BA = B(ACA) = (BA)(CA) = (BA)
′
(CA)

′
= A

′
B
′
A
′
C
′

= (ABA)
′
C
′

= A
′
C
′

= (CA)
′

= CA

Thus, B = BAB = (BA)B = (CA)B = C(AB) = CAC = C.
That is B = C.



Pseudoinverse of matrix

Example 2

Suppose A is a square matrix with full rank, then A+=?

A+ = A−1

Proof.
AA+ = AA−1 = I
A+A = A−1A = I
AA+A = AA−1A = A
A+AA+ = A−1AA−1 = A−1 = A+



Pseudoinverse of matrix

Example 3

Let A=


a
a
...
an

 be an n×  column vector, then A+=?

A+ = λA
′
, where λ = 1

a+a

+···+an

Proof.
AA+ = λAA

′
= λ[aiaj ]n×n

A+A = λA
′
A = λ(a + a + · · ·+ an) = 1

AA+A = A(A+A) = A
A+AA+ = (A+A)A+ = A+



Pseudoinverse of matrix

Example 4

Suppose an m× n matrix A =

[
B 0
0 0

]
, where B is an r × r

non-singular matrix. Then

A+ =

[
B−1 0

0 0

]

Proof.

AA+ =

[
Ir 0
0 0

]
, A+A =

[
Ir 0
0 0

]
AA+A = A, A+AA+ = A+



Pseudoinverse of matrix

Some basic properties of pseudoinversion

1. (A+)+ = A

2. (A
′
)+ = (A+)

′

3. rank(A+) = rank(A)

Proof.

rank(A) = rank(AA+A) ≤ rank(AA+) ≤ rank(A+)
rank(A+) = rank(A+AA+) ≤ rank(AA+) ≤ rank(A)

So, we have rank(A) = rank(A+)

Question
How to find a formula for pseudoinverse?



Pseudoinverse of matrix

Theorem 5
Suppose that an m× n matrix A has full column rank, that is
rank(A) = n, then A has a pseudoinverse.

A+ = (A
′
A)−1A

′

where A+ is an n×m matrix.

Proof.
First, we need to show A

′
A is non-singular.

Suppose rank(A+A) < n, then A
′
Ax = 0 has a non-zero solution

x. Then we have
x
′
A
′
Ax = 

(Ax)
′
Ax = 

Finally, we can get Ax = 0 has non-zero solution, A is singular.
This is a contradiction.



Pseudoinverse of matrix

Proof.
Second, we have

AA+ = A(A
′
A)−1A

′

(AA+)
′

= (A(A
′
A)−1A

′
)
′

= A(A
′
A)−1A

′
= AA+

A+A = (A
′
A)−1A

′
A = I

AA+A = AI = A A+AA+ = IA+ = A+

When we regress Y on X, we have β̂ = (X
′
X)−1X

′
Y, where X is

an n× k matrix and rank(X) = k. Then the β̂ can be also
written as X+Y.



Pseudoinverse of matrix

Example 6

A =

 1 0
1 2
−1 3



Solution
We have rank(A) = 2, then

A
′
A =

[
1 1 −1
0 2 3

] 1 0
1 2
−1 3

 =

[
3 −1
−1 13

]

A+ = (A
′
A)−1A

′
=

[
3 −1
−1 13

]−1 [
1 1 −1
0 2 3

]
= 1

38

[
13 1
1 3

] [
1 1 −1
0 2 3

]
= 1

38

[
13 15 −10
1 7 8

]



Pseudoinverse of matrix

Theorem 7
Suppose A is an m× n matrix, rank(A) = r. Then there exists an
m× r matrix F and an r × n matrix G such that A = FG and
rank(F) = rank(G) = r (Full rank Factorization)

Consider any r linearly independent columns of A. Let F be the
submatrix of A formed by these columns.
For each column Ak(k-th column of A), Ak = FGk, where Gk is a
vector of dimension r.
G =

[
G1 G2 · · ·Gn

]
r × n

FG = F
[
G1 G2 · · ·Gn

]
=
[
FG1 FG2 · · ·FGn

]
=
[
A1 A2 · · ·An

]
= A



Pseudoinverse of matrix

Example 8

A =

1 2 3
4 5 6
7 8 9

 rank(A) = 2

F =

1 2
4 5
7 8



FG1 = A1 →

1 2
4 5
7 8

G1 =

1
4
7

→ G1 =

[
1
0

]

FG2 = A2 →

1 2
4 5
7 8

G2 =

2
5
8

→ G2 =

[
0
1

]



Pseudoinverse of matrix

Example 9

FG3 = A3 →

1 2
4 5
7 8

G3 =

3
6
9

→ G3 =

[
−1
2

]
G =

[
G1 G2 G3

]
=

[
1 0 −1
0 1 2

]
Theorem 10
For an arbitrary m× n matrix A, its pseudoinverse exists. If
A = FG is a full rank decomposition of A, then

A+ = G
′
(GG

′
)−1(F

′
F)−1F

′
.



Pseudoinverse of matrix

Proof.
AA+ = FGG

′
(GG

′
)−1(F

′
F)−1F

′
= F(F

′
F)−1F

′

A+A = G
′
(GG

′
)−1(F

′
F)−1F

′
FG = G

′
(GG

′
)−1G

AA+A = F(F
′
F)−1F

′
FG = FG = A

A+AA+ = G
′
(GG

′
)−1GG

′
(GG

′
)−1(F

′
F)−1F

′

= G
′
(GG

′
)−1(F

′
F)−1F

′
= A+



Determinant

Definition 11
Suppose A is a 2× 2 matrix

A =

[
a a
a a,

]
then the determinant of A is

det(A) = |A| = aa − aa

Example 12

A =

[
−2 1
0 3

]
det(A) = −2× 3− 0× 0 = −6



Determinant

Some properties

Let A is a matrix which can be written as

A =
[
A1 A2

]
• det

[
A1 + A

′
1 A2

]
= det

[
A1 A2

]
+ det

[
A
′
1 A2

]
• det

[
A1 A2 + A

′
2

]
= det

[
A1 A2

]
+ det

[
A1 A

′
2

]
• det

[
c ·A1 A2

]
= c · det

[
A1 A2

]
• det

[
A1 c ·A2

]
= c · det

[
A1 A2

]
• det

[
A1 A2

]
= −det

[
A2 A1

]
• det

[
A1 A1

]
= 0

• det(I2) = 1



Determinant

Definition 13
Let A =

[
aij
]
n×m

. The minor Mij of A is the determinant of the
matrix formed from A by removing the i-th row and j-th column.
The cofactor Aij = (−1)i+jMij , then

det(A) =
∑n

j= aijAij or det(A) =
∑n

i= aijAij

Example 14

A =

1 2 3
5 0 6
7 8 9


det(A) = 5× (−1)2+1

∣∣∣∣2 3
8 9

∣∣∣∣+ 6× (−1)2+3

∣∣∣∣1 2
7 8

∣∣∣∣
= −5× (18− 24)− 6× (8− 14) = 30 + 36 = 66



Determinant

Example 15

A =


a 0 · · · 0
a a · · · 0

...
...

. . .
...

an an · · · ann


det(A) = a11a22 · · · ann

det(A) = a · (−1)1+1

∣∣∣∣∣∣∣
a22 · · · 0

...
. . .

...
an · · · ann

∣∣∣∣∣∣∣
= aa · (−1)1+1

∣∣∣∣∣∣∣
a33 · · · 0

...
. . .

...
an · · · ann

∣∣∣∣∣∣∣ = · · · = aa · · · ann



Determinant

Basic Properties of Determinants

• det[· · · ,Ai + A
′

i, · · · ]= det[· · · ,Ai, · · · ] + det[· · · ,A′

i, · · · ]
• det[· · · , cAi, · · · ] = c · det[· · · ,Ai, · · · ]
• det[· · · ,Ai, · · · ,Aj , · · · ] = −det[· · · ,Aj , · · · ,Ai, · · · ]
• det(In) = 1

• det[A1, · · · ,B, · · · ,B, · · · ] = 0

• det[· · · ,Ai + cAj , · · · ] = det[A1, · · · ,An]

• det[· · · , 0, · · · ] = 0



Determinant

Determinant and elementary operations

If a square matrix A is transformed to another matrix Ā via an
elementary operation e, then

det(Ā) = q · det(A)

the number q is

• q = −1 if e is a row switching.

• q = λ if e is a row multiplication by a number λ.

• q = 1 if e is a row replacement.



Determinant

Some Additional Properties

• det(A) = det(A
′
)

• det(αA) = αndet(A)

• det(AB) = det(A) · det(B)

• det(A−1) = (det(A))−1

• det
[
A B
C D

]
= det(D) · det(A− BD−1C) if det(D) 6= 0

= det(A) · det(D− CA−1B) if det(A) 6= 0

• det(A) 6= 0 if and only if A is non-singular.

• If A is orthogonal, then det(A) = 1 or −1.



Determinant

Proof.
4.AA−1 = I→ det(A)det(A−1) = 1→ det(A−1) = (det(A))−1

5. [
A B
C D

]
→
[
A B
0 D− CA−1B

]
det

[
A B
C D

]
= det(A) · det(D− CA−1B)

7.AA
′

= I→ (det(A))2 = 1→ det(A) = 1or− 1



Idempotent matrices and projection matrix

Definition 16
A square matrix A is idempotent if AA = A

Definition 17
Let X be an n× k matrix, k < n, two projection matrices are

P = X(X
′
X)−1X

′

M = I−X(X
′
X)−1X

′

When we regress Y on X, we have β̂ = (X
′
X)−1X

′
Y, then

Ŷ = Xβ̂ = X(X
′
X)−1X

′
Y = PY

Û = Y − Ŷ = Y − PY = MY



Idempotent matrices and projection matrix

Some properties

P · P = X(X
′
X)−1X

′
X(X

′
X)−1X

′
= X(X

′
X)−1X

′
= P

M ·M = (I− P)(I− P) = I− 2P + PP = I− 2P + P = I− P =
M M + P = I
M · P = (I− P)P = P− PP = P− P = 0

Another useful property of P and M

tr(P) = tr(X(X
′
X)−1X

′
) = tr((X

′
X)−1X

′
X) = tr(Ik) = k

tr(M) = tr(In − P) = tr(In)− tr(P) = n− k



Positive Definite Matrices

Definition 18
We say a square matrix A is positive semi-definite if for all
non-zero c, c

′
Ac ≥ 0. Sometimes, this is written as A ≥ 0. We say

a square matrix A is positive definite if for all non-zero c, c
′
A

c > 0. This is written as A > 0.

Some properties

• If A > 0, then A is non-singular, A−1 exists and A−1 > 0.

• For an n× k matrix X which has full column rank, then XX
′

is symmetric and positive definite.

• If A is symmetric, then A > 0 ⇐⇒ all its characteristic roots
are positive.

• If A > 0, we can find B such that A = BB
′
. We call B a

matrix square root of A. Note that B may not be unique.



Kronecker product and vec operation

Definition 19
Let A =

[
aij
]

be an m× n matrix,

A =
[
a a · · · an

]
,

where aj is the j-th column of A. The vec of A, denoted by
vec(A), is the mn×  vector.

vec(A) =


a
a
...
an





Kronecker product and vec operation

Definition 20
Let Bs×t be any matrix. The Kronecker product A and B, denoted
by A

⊗
B, is the matrix

A
⊗

B =


aB aB · · · anB
aB aB · · · anB

...
...

. . .
...

amB amB · · · amnB



Some properties

• (A + B)
⊗

C = A
⊗

C + B
⊗

C

• (A
⊗

B) · (C
⊗

D) = (AC)
⊗

(BD)(Mixed product property)

• A
⊗

(B
⊗

C) = (A
⊗

B)
⊗

C

• (A
⊗

B)
′

= A
′⊗

B
′



Kronecker product and vec operation

Some properties

• tr(A
⊗

B) = tr(A) · tr(B)

• If A is m×m, B is n× n, we have

det(A
⊗

B) = [det(A)]n[det(B)]m

• (A
⊗

B)−1 = A−1
⊗

B−1

• If A > 0, B > 0, then A
⊗

B > 0

• vec(ABC) = (C
′⊗

A)vec(B)
= (I

⊗
AB)vec(C)

= (C
′
B
′⊗

I)vec(A)
vec(AB) = (I

⊗
A)vec(B) = (B

′⊗
I)vec(A)

• tr(ABCD) = vec(D
′
)
′
(C
′⊗

A)vec(B)



Kronecker product and vec operation

Example 21

The Kronecker product can be used to present linear equations in
which the unknowns are matrices

AX = B,

where X =
[
X1 · · · Xk

]
, B =

[
b · · · bk

]
. The equations

above can be reformulated as

A
[
X1 · · · Xk

]
=
[
b · · · bk

]
↓

AX1 = b · · · AXk = bk
↓



Kronecker product and vec operation

Example 1.38 
A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A



X1

X2
...
Xk

 =


b
b
...
bk


↓

(I
⊗

A) · vec(X) = vec(B)
↓

vec(AX) = vec(B)



Kronecker product and vec operation

Example 22

AX + XB = C
↓

vec(AX + XB) = vec(C)
↓

vec(AX) + vec(XB) = vec(C)
↓

(I
⊗

A)vec(X) + (B
′⊗

I)vec(X) = vec(C)
↓

[(I
⊗

A) + (B
′⊗

I)]vec(X) = vec(C)



Kronecker product and vec operation

Example 23

AXB = C
↓

vec(AXB) = vec(C)
↓

(B
′⊗

A)vec(X) = vec(C)
↓

If all matrices are invertible, then

vec(X) = [B
′⊗

A]−1vec(C)
↓

vec(X) = [(B
′
)−1

⊗
A−1]vec(C)



Matrix Calculus

Definition 24

Let X =


X1

X2
...
Xk

 be k ×  matrix and g(X) = g(X1,X2, · · · ,Xk):

Rk → R. The vector derivative is

∂g(X)
∂X =


∂g(X)
∂X1
∂g(X)
∂X2

...
∂g(X)
∂Xk


∂g(X)

∂X′
=
[
∂g(X)
∂X1

∂g(X)
∂X2

· · · ∂g(X)
∂Xk

]



Matrix Calculus

Some properties

• ∂
∂X(a

′
X) = ∂

∂X(X
′
a) = a

• ∂
∂X′

(AX) = A

• ∂
∂X(X

′
AX) = (A + A

′
)X

• ∂2

∂X∂X′
(X
′
AX) = A + A

′

Some properties

Let A =
[
aij
]

be an m× n matrix and g(A): Rm×n → R. We
define

∂g(A)
∂A =

[
∂
∂aij

g(A)
]

• ∂
∂A(X

′
AX) = XX

′



Matrix Calculus

Some properties

Let Am×m be a non-singular matrix whose elements are functions
of the scale parameter α

A =

a(α) a(α) · · · am(α)
...

...
. . .

...
am(α) am(α) · · · amm(α)


then ∂A−1

∂α = −A−1 ∂A
∂αA

−1.

Proof.

AA−1 = I
A∂A−1

∂α + ∂A
∂αA

−1 = 0
∂A−1

∂α = −A−1 ∂A
∂αA

−1


