LINEAR ALGEBRA

Kuangyu Wen

Huazhong University of Science and Technology

July 21, 2021

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Contents

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- Pseudoinverse of matrix
- Determinant
- Idempotent matrix and projection matrix
- Positive definite matrices
- Kronecker product and vec operation

Generalized inverse(pseudoinverse) Moore-Penrose

Matrix inversion is defined for square matrix with full rank. For a general matrix $A: m \times n$, the matrix A^+ is called pseudoinverse of A if the following conditions hold.

KORKARYKERKER POLO

1. $AA^+A = A$ 2. $A^+ A A^+ = A^+$ 3. $(AA^+)' = AA^+$ 4. $(A+A)' = A+A$

Note that A^+ must be $n \times m$.

Theorem 1

Let A be a matrix. If its pseudoinverse exists, then it is unique.

Proof.

Suppose B and C are two pseudoinverse of A . Then we have

$$
AB = (ACA)B = (AC)(AB) = (AC)'(AB)' = C'A'B'A'
$$

= C'(ABA)' = C'A' = (AC)' = AC

By the same way, we have

$$
BA = B(ACA) = (BA)(CA) = (BA)'(CA)' = A'B'A'C'
$$

= (ABA)'C' = A'C' = (CA)' = CA

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 \equiv ΩQ

Thus, $B = BAB = (BA)B = (CA)B = C(AB) = CAC = C$. That is $B = C$.

Example 2

Suppose A is a square matrix with full rank, then $A^+=?$

$$
\mathbf{A}^+ = \mathbf{A}^{-1}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Proof.
\n
$$
AA^+ = AA^{-1} = I
$$

\n $A^+A = A^{-1}A = I$
\n $AA^+A = AA^{-1}A = A$
\n $A^+AA^+ = A^{-1}AA^{-1} = A^{-1} = A^+$

Example 3
Let
$$
A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}
$$
 be an $n \times 1$ column vector, then $A^+ = ?$

$$
A^+ = \lambda A', \text{ where } \lambda = \frac{1}{a_1^2 + a_2^2 + \dots + a_n^2}
$$

KORK EXTERNE PROVIDE

Proof. $AA^+ = \lambda AA^{\prime} = \lambda [a_i a_j]_{n \times n}$ $A^{+}A = \lambda A' A = \lambda (a_1^2 + a_2^2 + \cdots + a_n^2) = 1$ $AA^+A = A(A^+A) = A$ $A^{+}AA^{+} = (A^{+}A)A^{+} = A^{+}$

Example 4

Suppose an
$$
m \times n
$$
 matrix $A = \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix}$, where B is an $r \times r$
non-singular matrix. Then

$$
A^+=\begin{bmatrix}B^{-1}&0\\0&0\end{bmatrix}
$$

Proof.

$$
AA^{+} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}, \quad A^{+}A = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}
$$

$$
AA^{+}A = A, \quad A^{+}AA^{+} = A^{+}
$$

П

Kロトメ部トメミトメミト ミニのQC

Some basic properties of pseudoinversion

1. $(A^+)^+ = A$ 2. $(A')^{+} = (A^{+})'$ 3. $rank(A^+) = rank(A)$

Proof.

$$
rank(A) = rank(AA^{+}A) \le rank(AA^{+}) \le rank(A^{+})
$$

$$
rank(A^{+}) = rank(A^{+}AA^{+}) \le rank(AA^{+}) \le rank(A)
$$

KORKARYKERKER POLO

So, we have $rank(A) = rank(A^+)$

Question

How to find a formula for pseudoinverse?

Theorem 5

Suppose that an $m \times n$ matrix A has full column rank, that is $rank(A) = n$, then A has a pseudoinverse.

$$
\mathbf{A}^+ = (\mathbf{A}'\mathbf{A})^{-1}\mathbf{A}'
$$

where A^+ is an $n \times m$ matrix.

Proof

First, we need to show $A' A$ is non-singular. Suppose $\mathit{rank}(A^+A) < n$, then $A^{'}Ax = 0$ has a non-zero solution x . Then we have $x' A' A x = 0$ $(Ax)^{'}Ax = 0$

Finally, we can get $Ax = 0$ has non-zero solution, A is singular. This is a contradiction.

KORKAR KERKER ST VOOR

Proof.

Second, we have

$$
AA^{+} = A(A'A)^{-1}A'
$$

\n
$$
(AA^{+})' = (A(A'A)^{-1}A')' = A(A'A)^{-1}A' = AA^{+}
$$

\n
$$
A^{+}A = (A'A)^{-1}A'A = I
$$

\n
$$
AA^{+}A = AI = A
$$

\n
$$
A^{+}AA^{+} = IA^{+} = A^{+}
$$

When we regress $\rm Y$ on $\rm X$, we have $\hat{\beta} = (\rm X'X)^{-1} \rm X' \rm Y$, where $\rm X$ is an $n \times k$ matrix and $rank(X) = k$. Then the $\hat{\beta}$ can be also written as X^+Y .

KORK EXTERNE PROVIDE

Example 6

$$
A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ -1 & 3 \end{bmatrix}
$$

Solution

We have
$$
rank(A) = 2
$$
, then
\n
$$
A' A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -1 & 13 \end{bmatrix}
$$
\n
$$
A^+ = (A'A)^{-1}A' = \begin{bmatrix} 3 & -1 \\ -1 & 13 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 3 \end{bmatrix}
$$
\n
$$
= \frac{1}{38} \begin{bmatrix} 13 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 3 \end{bmatrix} = \frac{1}{38} \begin{bmatrix} 13 & 15 & -10 \\ 1 & 7 & 8 \end{bmatrix}
$$

Theorem 7

Suppose A is an $m \times n$ matrix, $rank(A) = r$. Then there exists an $m \times r$ matrix F and an $r \times n$ matrix G such that $A = FG$ and $rank(F) = rank(G) = r$ (Full rank Factorization)

Consider any r linearly independent columns of A . Let F be the submatrix of A formed by these columns.

For each column A_k (k-th column of A), $A_k = FG_k$, where G_k is a vector of dimension r .

KORKAR KERKER SAGA

$$
G = [G_1 \ G_2 \ \cdots G_n]
$$

\n
$$
FG = F[G_1 \ G_2 \ \cdots G_n] = [FG_1 \ FG_2 \ \cdots FG_n]
$$

\n
$$
= [A_1 \ A_2 \ \cdots A_n] = A
$$

Kロトメ部トメミトメミト ミニのQC

Example 8

$$
A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad rank(A) = 2
$$

$$
F = \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix}
$$

$$
FG_1 = A_1 \rightarrow \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix} G_1 = \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} \rightarrow G_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$

$$
FG_2 = A_2 \rightarrow \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix} G_2 = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix} \rightarrow G_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

Example 9
\n
$$
FG_3 = A_3 \rightarrow \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix} G_3 = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix} \rightarrow G_3 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}
$$
\n
$$
G = \begin{bmatrix} G_1 & G_2 & G_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}
$$

Theorem 10

For an arbitrary $m \times n$ matrix A, its pseudoinverse exists. If $A = FG$ is a full rank decomposition of A, then

$$
A^+ = G'(GG')^{-1}(F'F)^{-1}F'.
$$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Kロトメ部トメミトメミト ミニのQC

Proof.
\n
$$
AA^{+} = FGG'(GG')^{-1}(F'F)^{-1}F' = F(F'F)^{-1}F'
$$
\n
$$
A^{+}A = G'(GG')^{-1}(F'F)^{-1}F'FG = G'(GG')^{-1}G
$$
\n
$$
AA^{+}A = F(F'F)^{-1}F'FG = FG = A
$$
\n
$$
A^{+}AA^{+} = G'(GG')^{-1}GG'(GG')^{-1}(F'F)^{-1}F'
$$
\n
$$
= G'(GG')^{-1}(F'F)^{-1}F' = A^{+}
$$

Definition 11 Suppose A is a 2×2 matrix

$$
A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
$$

then the determinant of A is

$$
det(A) = |A| = a_{11}a_{22} - a_{12}a_{21}
$$

Example 12

$$
A = \begin{bmatrix} -2 & 1 \\ 0 & 3 \end{bmatrix}
$$

$$
det(A) = -2 \times 3 - 0 \times 0 = -6
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Some properties

Let A is a matrix which can be written as

$$
A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

\n- $$
det [A_1 + A_1' A_2] = det [A_1 A_2] + det [A_1' A_2]
$$
\n- $det [A_1 A_2 + A_2'] = det [A_1 A_2] + det [A_1 A_2']$
\n- $det [c \cdot A_1 A_2] = c \cdot det [A_1 A_2]$
\n- $det [A_1 c \cdot A_2] = c \cdot det [A_1 A_2]$
\n- $det [A_1 A_2] = -det [A_2 A_1]$
\n- $det [A_1 A_1] = 0$
\n- $det(I_2) = 1$
\n

Definition 13

Let $A = [a_{ij}]_{n \times m}$. The minor M_{ij} of A is the determinant of the matrix formed from A by removing the i-th row and j-th column. The cofactor $A_{ij} = (-1)^{i+j} M_{ij}$, then

$$
det(A) = \sum_{j=1}^{n} a_{ij} A_{ij}
$$
 or $det(A) = \sum_{i=1}^{n} a_{ij} A_{ij}$

Example 14

$$
A = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 0 & 6 \\ 7 & 8 & 9 \end{bmatrix}
$$

$$
det(A) = 5 \times (-1)^{2+1} \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} + 6 \times (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix}
$$

= -5 \times (18 - 24) - 6 \times (8 - 14) = 30 + 36 = 66

Example 15

$$
A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}
$$

$$
det(A) = a_{11}a_{22} \cdots a_{nn}
$$

$$
det(A) = a_{11} \cdot (-1)^{1+1} \begin{vmatrix} a_{22} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix}
$$

$$
= a_{11}a_{22} \cdot (-1)^{1+1} \begin{vmatrix} a_{33} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ a_{n3} & \cdots & a_{nn} \end{vmatrix} = \cdots = a_{11}a_{22} \cdots a_{nn}
$$

Kロトメ部トメミトメミト ミニのQC

Basic Properties of Determinants

• det[\cdots , $A_i + A'_i$, \cdots]= det[\cdots , A_i , \cdots] + det[\cdots , A'_i , \cdots]

KORK EXTERNE PROVIDE

- $det[\cdots, cA_i, \cdots] = c \cdot det[\cdots, A_i, \cdots]$
- $det[\cdots, A_i, \cdots, A_j, \cdots] = -det[\cdots, A_j, \cdots, A_i, \cdots]$
- $det(I_n) = 1$
- $det[A_1, \cdots, B, \cdots, B, \cdots] = 0$
- det $[\cdots, A_i + cA_j, \cdots] = det[A_1, \cdots, A_n]$
- $det[\cdots, 0, \cdots] = 0$

Determinant and elementary operations

If a square matrix A is transformed to another matrix \bar{A} via an elementary operation e , then

$$
det(\bar{A}) = q \cdot det(A)
$$

KORKARYKERKER POLO

the number q is

- $q = -1$ if e is a row switching.
- $q = \lambda$ if e is a row multiplication by a number λ .
- $q = 1$ if e is a row replacement.

Some Additional Properties

- $det(A) = det(A')$
- $det(\alpha A) = \alpha^n det(A)$
- $det(AB) = det(A) \cdot det(B)$

•
$$
det(A^{-1}) = (det(A))^{-1}
$$

•
$$
det\begin{bmatrix} A & B \\ C & D \end{bmatrix} = det(D) \cdot det(A - BD^{-1}C)
$$
 if $det(D) \neq 0$
= $det(A) \cdot det(D - CA^{-1}B)$ if $det(A) \neq 0$

KORKARYKERKER POLO

- $det(A) \neq 0$ if and only if A is non-singular.
- If A is orthogonal, then $det(A) = 1$ or -1 .

Proof.
\n
$$
4.AA^{-1} = I \rightarrow det(A)det(A^{-1}) = 1 \rightarrow det(A^{-1}) = (det(A))^{-1}
$$

\n5.

$$
\begin{bmatrix} A & B \\ C & D \end{bmatrix} \rightarrow \begin{bmatrix} A & B \\ 0 & D - CA^{-1}B \end{bmatrix}
$$

$$
det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = det(A) \cdot det(D - CA^{-1}B)
$$

 \Box

Kロトメ部トメミトメミト ミニのQC

$$
7.\mathrm{AA}' = \mathrm{I} \rightarrow (det(\mathrm{A}))^2 = 1 \rightarrow det(\mathrm{A}) = 1 \text{or} -1
$$

Idempotent matrices and projection matrix

Definition 16

A square matrix A is idempotent if $AA = A$

Definition 17

Let X be an $n \times k$ matrix, $k < n$, two projection matrices are

$$
P = X(X'X)^{-1}X'
$$

$$
M = I - X(X'X)^{-1}X'
$$

When we regress $\rm Y$ on $\rm X$, we have $\rm \hat{\beta} = (\rm X'X)^{-1} \rm X' \rm Y$, then

$$
\hat{Y} = X\hat{\beta} = X(X'X)^{-1}X'Y = PY
$$

$$
\hat{U} = Y - \hat{Y} = Y - PY = MY
$$

KORKARYKERKER POLO

Idempotent matrices and projection matrix

Some properties P · P = X(X 0 X) [−]1X 0 X(X 0 X) [−]1X 0 = X(X 0 X) [−]1X 0 = P M · M = (I − P)(I − P) = I − 2P + PP = I − 2P + P = I − P = M M + P = I M · P = (I − P)P = P − PP = P − P = 0

KORKARYKERKER POLO

Another useful property of P and M $tr(P) = tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = tr(I_k) = k$ $tr(M) = tr(I_n - P) = tr(I_n) - tr(P) = n - k$

Positive Definite Matrices

Definition 18

We say a square matrix A is positive semi-definite if for all non-zero $c, \, c^{'} \mathrm{A} c \geq 0.$ Sometimes, this is written as $\mathrm{A} \geq 0.$ We say a square matrix ${\rm A}$ is positive definite if for all non-zero $c,\,c^{'}$ ${\rm A}$ $c > 0$. This is written as $A > 0$.

Some properties

- If $A > 0$, then A is non-singular, A^{-1} exists and $A^{-1} > 0$.
- For an $n \times k$ matrix X which has full column rank, then XX' is symmetric and positive definite.
- If A is symmetric, then $A > 0 \iff$ all its characteristic roots are positive.
- If $A > 0$, we can find B such that $A = BB'$. We call B a matrix square root of A. Note that B may not be unique.

Definition 19 Let $\mathrm{A}=\left[a_{ij}\right]$ be an $m\times n$ matrix, $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$

where a_i is the j-th column of A. The vec of A, denoted by $vec(A)$, is the $mn \times 1$ vector.

$$
vec(\mathbf{A}) = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}
$$

Definition 20

Let $B_{s\times t}$ be any matrix. The Kronecker product A and B, denoted by $\rm A \bigotimes \rm B$, is the matrix

$$
A \bigotimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}
$$

Some properties

- $(A + B) \otimes C = A \otimes C + B \otimes C$
- $(A \otimes B) \cdot (C \otimes D) = (AC) \otimes (BD)$ (Mixed product property)

KORKAR KERKER SAGA

- $A \otimes (B \otimes C) = (A \otimes B) \otimes C$
- $(A \otimes B)' = A' \otimes B'$

Some properties

\n- $$
tr(A \otimes B) = tr(A) \cdot tr(B)
$$
\n- If A is $m \times m$, B is $n \times n$, we have\n
$$
det(A \otimes B) = [det(A)]^n [det(B)]^m
$$
\n- $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$
\n- If $A > 0$, $B > 0$, then $A \otimes B > 0$
\n- $vec(ABC) = (C' \otimes A)vec(B)$ \n $= (I \otimes AB)vec(C)$ \n $= (C'B' \otimes I)vec(A)$ \n $vec(AB) = (I \otimes A)vec(B) = (B' \otimes I)vec(A)$
\n- $tr(ABCD) = vec(D')'(C' \otimes A)vec(B)$
\n

Kロトメ部トメミトメミト ミニのQC

Example 21

The Kronecker product can be used to present linear equations in which the unknowns are matrices

 $AX = B$.

where $\mathrm{X} = \begin{bmatrix} \mathrm{X}_1 & \cdots & \mathrm{X}_k \end{bmatrix}$, $\mathrm{B} = \begin{bmatrix} b_1 & \cdots & b_k \end{bmatrix}$. The equations above can be reformulated as

$$
A\begin{bmatrix} X_1 & \cdots & X_k \end{bmatrix} = \begin{bmatrix} b_1 & \cdots & b_k \end{bmatrix}
$$

$$
AX_1 = b_1 \begin{bmatrix} \cdots & AX_k \end{bmatrix} = b_k
$$

KORKARYKERKER POLO

Example 1.38

$$
\begin{bmatrix}\nA & 0 & \cdots & 0 \\
0 & A & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A\n\end{bmatrix}\n\begin{bmatrix}\nX_1 \\
X_2 \\
\vdots \\
X_k\n\end{bmatrix} =\n\begin{bmatrix}\nb_1 \\
b_2 \\
\vdots \\
b_k\n\end{bmatrix}
$$
\n
$$
(I \otimes A) \cdot vec(X) = vec(B)
$$
\n
$$
vec(AX) = vec(B)
$$

Kロトメ部トメミトメミト ミニのQC

Example 22

$$
AX + XB = C
$$

\n
$$
\downarrow
$$

\n
$$
vec(AX + XB) = vec(C)
$$

\n
$$
\downarrow
$$

\n
$$
vec(AX) + vec(XB) = vec(C)
$$

\n
$$
(I \otimes A)vec(X) + (B' \otimes I)vec(X) = vec(C)
$$

\n
$$
[(I \otimes A) + (B' \otimes I)]vec(X) = vec(C)
$$

Kロトメ部トメミトメミト ミニのQC

Example 23

$$
AXB = C
$$

\n
$$
\downarrow
$$

\n
$$
vec(AXB) = vec(C)
$$

\n
$$
\downarrow
$$

\n
$$
(B' \otimes A)vec(X) = vec(C)
$$

If all matrices are invertible, then

$$
vec(X) = [B' \bigotimes A]^{-1}vec(C)
$$

\n
$$
\downarrow
$$

\n
$$
vec(X) = [(B')^{-1} \bigotimes A^{-1}]vec(C)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Matrix Calculus

Definition 24
\nLet
$$
X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix}
$$
 be $k \times 1$ matrix and $g(X) = g(X_1, X_2, \dots, X_k)$:
\n $\mathbb{R}^k \to \mathbb{R}$. The vector derivative is
\n
$$
\begin{bmatrix} \frac{\partial g(X)}{\partial X_1} \\ \vdots \\ \frac{\partial g(X)}{\partial A(X)} \end{bmatrix}
$$

$$
\frac{\partial g(X)}{\partial X} = \begin{bmatrix} \frac{\partial g(X)}{\partial X_2} \\ \frac{\partial g(X)}{\partial X_2} \\ \vdots \\ \frac{\partial g(X)}{\partial X_k} \end{bmatrix}
$$

$$
\frac{\partial g(X)}{\partial X'} = \begin{bmatrix} \frac{\partial g(X)}{\partial X_1} & \frac{\partial g(X)}{\partial X_2} & \cdots & \frac{\partial g(X)}{\partial X_k} \end{bmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Matrix Calculus

Some properties

•
$$
\frac{\partial}{\partial X}(a'X) = \frac{\partial}{\partial X}(X'a) = a
$$

•
$$
\frac{\partial}{\partial X'}(AX) = A
$$

•
$$
\frac{\partial}{\partial X}(X'AX) = (A + A')X
$$

$$
\bullet \ \frac{\partial^2}{\partial X \partial X'} (X'AX) = A + A'
$$

Some properties

Let $A = [a_{ij}]$ be an $m \times n$ matrix and $g(A)$: $\mathbb{R}^{m \times n} \to \mathbb{R}$. We define

$$
\frac{\partial g(A)}{\partial \mathbf{A}} = \left[\frac{\partial}{\partial a_{ij}} g(\mathbf{A})\right]
$$

•
$$
\frac{\partial}{\partial A}(X'AX) = XX'
$$

Matrix Calculus

Some properties

Let $A_{m \times m}$ be a non-singular matrix whose elements are functions of the scale parameter α

$$
A = \begin{bmatrix} a_{11}(\alpha) & a_{12}(\alpha) & \cdots & a_{1m}(\alpha) \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}(\alpha) & a_{m2}(\alpha) & \cdots & a_{mm}(\alpha) \end{bmatrix}
$$

then $\frac{\partial A^{-1}}{\partial \alpha} = -A^{-1} \frac{\partial A}{\partial \alpha} A^{-1}$.

Proof.

|__|
|이외어 - 로그 지르게 지릅게 지르게 지