LINEAR ALGEBRA

Kuangyu Wen

Huazhong University of Science and Technology

July 23, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Contents

- Vector spaces
- Linear independence and bases
- Linear transformation
- Invertible matrices and linear transformation
- The range, rank, kernel and nullity of linear transformation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Singular and non-singular linear transformation
- Orthonormal bases and orthogonal complement
- Eigenvalues and eigenvectors

Vector spaces

Some operations on vectors

- $1 \cdot v = v$ for all $v \in \mathbb{R}_{\mathrm{N}}$
- if $c_1, c_2 \in \mathbb{R}$ and $v \in \mathbb{R}_N$, then $(c_1c_2) \cdot v = c_1(c_2v)$ for all $v \in \mathbb{R}^N$ and $c_1, c_2 \in \mathbb{R}$

•
$$(v+w) + z = v + (w+z)$$

•
$$c(v+w) = cv + cw$$

•
$$(c_1 + c_2)v = c_1v + c_2v$$

Definition 1

A vector space consists of a non-empty set V together with operations of addition and multiplication by numbers, denoted by v + w and cv where v and w in V and c is a number, and these operations satisfy rules above with $\mathbb{R}^{\mathbb{N}}$ everywhere replaced by V.

Vector spaces

Definition 2

W is a subspace of a vector space V, if W is a subset of V and W is itself is a vector space under the operations of addition and multiplication by numbers defined on V.

 $v, w \in \mathbf{V}$ $av + bw \in \mathbf{V}?$

Example 3

 \mathbb{R}^2 is a vector space and $\{(v_1, v_2) \in \mathbb{R}^2 | v_1 + v_2 = 0 \text{ is a subspace of } \mathbb{R}^2$.

Definition 4

If V is a vector space, the vector $v \in V$ is a linear combination of the vectors v_1, v_2, \cdots, v_N , if there are numbers c_1, c_2, \cdots, c_N such that $v = c_1v_1 + c_2v_2 + \cdots + c_Nv_N$.

Definition 5

If $v_1, v_2, \dots, v_N \in V$, their linear span is set of all linear combinations of v_1, v_2, \dots, v_N . The vectors v_1, v_2, \dots, v_N span V, if V is the linear span of v_1, v_2, \dots, v_N .

Remark 6

The linear span of v_1, v_2, \dots, v_N is a subspace of V and is the smallest subspace containing v_1, v_2, \dots, v_N . \mathbb{R}^2 is the linear span of (0, 1) and (1, 0).

Definition 7

The vectors $v_1, v_2, \cdots, v_N \in V$ are linearly dependent if there exist numbers c_1, c_2, \cdots, c_N , not all of which are zero, such that

$$c_1v_1 + c_2v_2 + \dots + c_Nv_N = \mathbf{0}$$

The vectors $v_1, v_2, \cdots, v_N \in V$ are linearly independent if they are not linearly dependent.

Example 8

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Definition 9

A basis for a vector space ${\rm V}$ is a set of independent vectors in ${\rm V}$ that spans ${\rm V}.$

Example 10

Let $e_n = (0, \dots, 1, \dots, 0) \in \mathbb{R}^N$ where the 1 is in the n-th position. Then e_1, e_2, \dots, e_N is the standard basis of \mathbb{R}^N .

Theorem 11

If v_1, v_2, \cdots, v_M span a vector space V, then any independent set of vectors in V has no more then M elements.

Definition 12

A vector space is finite dimensional, if it has a finite basis.

Definition 13

The dimension of a finite dimensional vector space V, denoted by dimV, is the number of vectors in a basis of V.

Corollary

If V is a vector space of dimension N, then any N vectors in V that span V are independent and so are a basis of V.

Corollary

If V is a finite dimensional vector space, a basis for V is any smallest or minimal set of vectors that span V.

Lemma 14

If v_1, v_2, \cdots, v_M are independent vectors in V, and $w \in V$ does not belong to the span of v_1, v_2, \cdots, v_M . Then v_1, v_2, \cdots, v_M, w are independent

Corollary

If V is a vector space of dimension N, then any n independent vectors in V span V and so are a basis for V.

Theorem 15

If the vectors v_1, v_2, \cdots, v_N span the vector space V and dimV > 0, then some subset of v_1, v_2, \cdots, v_N form a basis for V.

Theorem 16

If V is finite dimensional, non-zero vector space, any largest or maximal set of independent vectors in V is a basis for V.

Application

This theorem suggests a way to construct a basis for a non-zero vector space ${\rm V}.$

Theorem 17

Let W be a non-zero subspace of a finite dimensional vector space V such that $W \neq V$, then dimW < dimV.

Theorem 18

If v_1, v_2, \dots, v_N is a basis of the vector space V, and $v \in V$, then the numbers c_1, c_2, \dots, c_N such that $v = \sum_{n=1}^N c_n v_n$ are unique.

The row and column ranks of a matrix

Definition 19

Let A be an $M\times N$ matrix. The linear span of the rows of A is a subspace of \mathbb{R}^N , which is called row space. The linear span of the columns of A is a subspace of \mathbb{R}^M , which is called column space. The row rank of A is the dimension of the row space and the column rank of A is the dimensional of the column space.

Theorem 20

The row and column ranks of any matrix are equal.

Linear transformation

Definition 21

A and B are non-empty sets. A function $f : A \to B$ assigns a single point f(a) in B to every point a in A.

set A: domain set B: codomain f: function mapping

Definition 22

Let ${\rm V},{\rm W}$ be vector spaces, then ${\rm T}:{\rm V}\to{\rm W}$ is linear if for all numbers a,b and for all vectors $v_1,v_2\in{\rm V}$

$$T(a_1v_1 + a_2v_2) = a_1T(v_1) + a_2T(v_2)$$

and when $a_1 = a_2 = 0$, T(0) = 0.

Theorem 23

Matrices can be used to represent linear transformation from one finite dimensional vector space to another.

Proof.

Suppose v_1, \dots, v_N is a basis for V and w_1, \dots, w_M is a basis for W. For $v \in V$, there exist x_1, \dots, x_N such that $v = \sum_{n=1}^N x_n v_n$ and y_1, \dots, y_M such that $T(v) = \sum_{m=1}^M y_m w_m$. Let $T(v_n) = \sum_{m=1}^M a_{mn} w_m$, then $T(v) = T(\sum_{n=1}^N x_n v_n) = \sum_{n=1}^N x_n T(v_n) = \sum_{m=1}^M \sum_{n=1}^N a_{mn} x_n w_n = \sum_{m=1}^M y_m w_m$. Therefore we have $y_m = \sum_{n=1}^N a_{mn} x_n \iff y = Ax$, where $A = [a_{mn}]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark 24

If the $M \times N$ matrix A represents the linear transformation T and the $J \times M$ matrix B represents the linear transformation S, then the $J \times N$ matrix BA represents the linear transformation $S \circ T$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark 25

 $N \times N$ identity matrix I represents the identity function $\mathit{id}_V: V \rightarrow V.$

Definition 26

A function $f: V \to W$ is invertible if there exists $f^{-1}: W \to V$ such that $f \circ f^{-1} = id_W$ and $f^{-1} \circ f = id_V$, that is for all $w \in W$, $f(f^{-1}(w)) = w$ and for all $v \in V$, $f(f^{-1}(v)) = v$.

Definition 27

A function $f : V \to W$ is onto, if for all $w \in W$, there exist a $v \in V$ such that f(v) = w.

Definition 28

A function $f : V \to W$ is one-to-one, if for every $v_1, v_2 \in V$, $f(v_1) \neq f(v_2)$ if $v_1 \neq v_2$.

Remark 29 $f: V \to W$ is invertible if and only if f is onto and one-to-one.

Theorem 30

If $\mathrm{T}:\mathrm{V}\to\mathrm{W}$ is an invertible linear transformation. Then T^{-1} is linear.

Proof.

Let $w_1, w_2 \in \mathrm{W}$ and $v_1 = \mathrm{T}^{-1}(w_1), v_2 = \mathrm{T}^{-1}(w_2)$, then

$$T(c_1v_1 + c_2v_2) = c_1T(v_1) + c_2T(v_2) = c_1w_1 + c_2w_2$$

$$c_{1} T^{-1}(w_{1}) + c_{2} T^{-1}(w_{2}) = c_{1} v_{1} + c_{2} v_{2}$$
$$= T^{-1} \circ T(c_{1} v_{1} + c_{2} v_{2}) = T^{-1}(c_{1} w_{1} + c_{2} w_{2})$$

ъ.

Theorem 31

Let $T:V \rightarrow V$ be a linear transformation, v_1,v_2,\cdots,v_N is a basis for $V, A:N\times N$ represents T with respect to $v_1,v_2,\cdots,v_N.$ Then T is invertible if and only if A is invertible and A^{-1} represents $T^{-1}.$

Proposition 32

Let $T: V \to W$ be an invertible linear transformation, v_1, v_2, \dots, v_N are a basis for V if and only if $T(v_1), T(v_2), \dots, T(v_N)$ is a basis for W.

Corollary

Let $T:V\to W$ be an invertible linear transformation and V is finite dimensional, then W is finite dimensional and

dimW = dimV.

- ロ ト - 4 回 ト - 4 □

Definition 33 If $f : A \to B$ is a function, the range of f is $\{f(x) : x \in A\}$.

Definition 34

If $T : V \to W$ is a linear transformation, the kernel of T is $\{v \in V | T(v) = 0\}.$

Theorem 35

If $T: V \to W$ is a linear transformation, then the range of T is a subspace of W, the kernel of T is a subspace of V.

Definition 36

If $T:V\to W$ is a linear transformation, the rank of T is the dimension of the range of T and the nullity of T is the dimension of the kernel of T.

Theorem 37

Let $T:V \to W$ be a linear transformation. Then $rank \ T + nullity \ T = dim(V)$

Proof.

Let $dim(V) = N, v_1, v_2, \cdots, v_K$ is a basis for the null space of T, v_1, v_2, \cdots, v_N is an extension of v_1, v_2, \cdots, v_K to a basis for V. Then we want to show

$$T(v_{K+1}), T(v_{K+2}), \cdots T(v_N)$$

is a basis for the range of T.

Proof.

Since $T(v_1) = \cdots = T(v_K) = 0$, $T(v_{K+1}), T(v_{K+2}), \cdots T(v_N)$ span the range of T. Want to show they are linearly independent. Suppose $\sum_{n=K+1}^{N} c_n T(v_n) = 0$.

$$T(\sum_{n=K+1}^{N} c_n v_n) = \sum_{n=K+1}^{N} c_n T(v_n) = 0$$

$$\sum_{n=K+1}^{N} c_n v_n \text{ belongs to the kernel of } T, \text{ then}$$

$$\sum_{n=K+1}^{N} c_n v_n = \sum_{n=1}^{K} b_n v_n$$

Therefore $\sum_{n=K+1}^{N} c_n v_n - \sum_{n=1}^{K} b_n v_n = 0$. Since v_1, \cdots, v_N is a basis for V, they are independent and

$$b_1 = b_2 = \cdots = b_K = 0 = c_{K+1} = \cdots = c_N$$

T(v_{K+1}), \cdots , T(v_N) are independent.

Theorem 38

Let $T: V \to W$ be a linear transformation and suppose $A: M \times N$ representing T with respect to the bases v_1, \dots, v_N and w_1, \dots, w_M . Then the rank of T equals column rank of A and nullity of T equals N- column(row) rank of A

Singular and non-singular linear transformation

Definition 39

If $T: V \to W$ is a linear transformation, T is non-singular if the kernel of T is $\{0\}$. T is singular if it is not non-singular, i.e. if T(v) = 0 for some $v \neq 0$.

Remark 40

The linear transformation ${\rm T}$ is non-singular if and only if ${\rm T}$ is one-to-one.

Proof.

$$\mathbf{T}(v_1) = \mathbf{T}(v_2) \Longleftrightarrow \mathbf{T}(v_1 - v_2) = \mathbf{0}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Singular and non-singular linear transformation

Lemma 41

If $T: V \to W$ is linear transformation. T is non-singular if and only $T(v_1), T(v_2), \dots, T(v_N)$ are independent whenever v_1, v_2, \dots, v_N are independent.

Theorem 42

 $T:V \to W$ is linear transformation, and dim(V) = dim(W), then the following are equivalent

- T is invertible
- T is non-singular
- T is onto
- if v_1, v_2, \cdots, v_N is a basis for V, then $T(v_1), T(v_2), \cdots, T(v_N)$ is a basis for W.
- there is basis v_1, v_2, \dots, v_N for V such that $T(v_1), T(v_2), \dots, T(v_N)$ is a basis for W.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The inner product and norm

Definition 43

The inner product on \mathbb{R}^N is the function $\langle x, y \rangle$ or $\mathbf{x} \cdot \mathbf{y}$

$$x \cdot y = \sum_{i=1}^{N} x_i y_i \qquad \mathbb{R}^{N} \times \mathbb{R}^{N} \to \mathbb{R}$$

Definition 44

$$||x|| = \sqrt{x \cdot x}$$
 length of x

Remark 45

- if x, y are non-zero vectors in $\mathbb{R}^{\mathbb{N}}$ and if θ is the angle between x and y $\cos \theta = \frac{x \cdot y}{||x|| \cdot ||y||}$
- Cauchy-Schwarz inequality

$$\left|\frac{x \cdot y}{||x|| \cdot ||y||}\right| \leq 1 \Longleftrightarrow |x \cdot y| \leq ||x|| \cdot ||y||$$

Orthonormal bases and orthogonal complement

Definition 46

A set of vector v_1, v_2, \cdots, v_M in \mathbb{R}^N is orthogonal if $v_n \cdot v_m = 0$ if $m \neq n$.

Theorem 47 Orthogonal non-zero vectors are independent.

Definition 48

A basis v_1, \dots, v_M for a subspace V of \mathbb{R}^N is orthonormal if it is orthogonal and $||v_m|| = 1$ for all m.

Theorem 49

Every non-zero subspace V of \mathbb{R}^N has an orthonormal basis.(Gram-Schmidt process)

Orthonormal bases and orthogonal complement

Definition 50

If S is a subset of V, which is a subspace of $\mathbb{R}^N,$ the orthogonal complement of in V, denoted by S^\perp

$$S^{\perp} = \{ y \in V | y \cdot x = 0 \text{ for all } x \in S \}$$

Theorem 51

If W is a subspace of V and V is a subspace of \mathbb{R}^N , then

$$dim(W) + dim(W^{\perp}) = dim(V)$$

Orthogonal projection

Definition 52

Let W be a subspace of V, which is a subspace of \mathbb{R}^N . An orthogonal projection $\pi : V \to W$ is a linear transformation such that $(V - \pi(V)) \in W^{\perp}$ for all $v \in V$ and $[V - \pi(V)] \cdot W = 0$ for all $w \in W$.

Theorem 53

W is subspace of V, V subspace of \mathbb{R}^N , there exists a unique orthogonal projection from V to W.