LINEAR ALGEBRA

Kuangyu Wen

Huazhong University of Science and Technology

July 23, 2021

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Contents

- Vector spaces
- Linear independence and bases
- Linear transformation
- Invertible matrices and linear transformation
- The range, rank, kernel and nullity of linear transformation

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- Singular and non-singular linear transformation
- Orthonormal bases and orthogonal complement
- Eigenvalues and eigenvectors

Vector spaces

Some operations on vectors

- $1 \cdot v = v$ for all $v \in \mathbb{R}_{N}$
- if $c_1, c_2 \in \mathbb{R}$ and $v \in \mathbb{R}_N$, then $(c_1c_2) \cdot v = c_1(c_2v)$ for all $v \in \mathbb{R}^{\text{N}}$ and $c_1, c_2 \in \mathbb{R}$

$$
•\ \ (v+w)+z=v+(w+z)
$$

$$
c(v+w) = cv + cw
$$

$$
\bullet \ (c_1+c_2)v=c_1v+c_2v
$$

Definition 1

A vector space consists of a non-empty set V together with operations of addition and multiplication by numbers, denoted by $v + w$ and cv where v and w in V and c is a number, and these operations satisfy rules above with \mathbb{R}^{N} everywhere replaced by $\text{V}.$

Vector spaces

Definition 2

 W is a subspace of a vector space V , if W is a subset of V and W is itself is a vector space under the operations of addition and multiplication by numbers defined on V.

> $v, w \in V$ $av + bw \in V?$

Example 3

 \mathbb{R}^2 is a vector space and $\{(v_1,v_2)\in\mathbb{R}^2|v_1+v_2= \mathrm{o}$ is a subspace of \mathbb{R}^2 .

Definition 4

If V is a vector space, the vector $v \in V$ is a linear combination of the vectors v_1, v_2, \dots, v_N , if there are numbers c_1, c_2, \dots, c_N such that $v = c_1 v_1 + c_2 v_2 + \cdots + c_N v_N$.

Definition 5

If $v_1, v_2, \dots, v_N \in V$, their linear span is set of all linear combinations of v_1, v_2, \cdots, v_N . The vectors v_1, v_2, \cdots, v_N span V, if V is the linear span of v_1, v_2, \cdots, v_N .

Remark 6

The linear span of v_1, v_2, \dots, v_N is a subspace of V and is the smallest subspace containing $v_{\rm 1}, v_{\rm 2}, \cdots, v_{\rm N}$. \mathbb{R}^2 is the linear span of $(0, 1)$ and $(1, 0)$.

KORKAR KERKER SAGA

Definition 7

The vectors $v_1, v_2, \dots, v_N \in V$ are linearly dependent if there exist numbers c_1, c_2, \cdots, c_N , not all of which are zero, such that

$$
c_1v_1 + c_2v_2 + \cdots + c_Nv_N = 0
$$

The vectors $v_1, v_2, \dots, v_N \in V$ are linearly independent if they are not linearly dependent.

Example 8

 $(1, 0, 0)$ $(0, 1, 0)$ $(0, 0, 1)$ independent $(1, 0, 0)$ $(0, 1, 0)$ $(1, 1, 0)$ dependent

KORKAR KERKER SAGA

Definition 9

A basis for a vector space V is a set of independent vectors in V that spans V.

Example 10

Let $e_n=(0,\cdots,1,\cdots,0)\in\mathbb{R}^{{\rm N}}$ where the 1 is in the n-th position. Then $e_1,e_2,\cdots,e_\mathrm{N}$ is the standard basis of $\mathbb{R}^\mathrm{N}.$

Theorem 11

If v_1, v_2, \cdots, v_M span a vector space V, then any independent set of vectors in V has no more then M elements.

KORKAR KERKER SAGA

Definition 12

A vector space is finite dimensional, if it has a finite basis.

Definition 13

The dimension of a finite dimensional vector space V, denoted by $dimV$, is the number of vectors in a basis of V.

Corollary

If V is a vector space of dimension N, then any N vectors in V that span V are independent and so are a basis of V.

Corollary

If V is a finite dimensional vector space, a basis for V is any smallest or minimal set of vectors that span V.

Lemma 14

If v_1, v_2, \dots, v_M are independent vectors in V, and $w \in V$ does not belong to the span of v_1, v_2, \cdots, v_M . Then v_1, v_2, \cdots, v_M, w are independent

Corollary

If V is a vector space of dimension N, then any n independent vectors in V span V and so are a basis for V.

Theorem 15

If the vectors v_1, v_2, \cdots, v_N span the vector space V and $dim V > 0$, then some subset of v_1, v_2, \dots, v_N form a basis for V.

Theorem 16

If V is finite dimensional, non-zero vector space, any largest or maximal set of independent vectors in V is a basis for V .

Application

This theorem suggests a way to construct a basis for a non-zero vector space V.

Theorem 17

Let W be a non-zero subspace of a finite dimensional vector space V such that $W \neq V$, then $dimW < dimV$.

Theorem 18

If v_1, v_2, \dots, v_N is a basis of the vector space V, and $v \in V$, then the numbers c_1, c_2, \cdots, c_N such that $v = \sum_{n=1}^{N} c_n v_n$ are unique.

The row and column ranks of a matrix

Definition 19

Let A be an $M \times N$ matrix. The linear span of the rows of A is a subspace of \mathbb{R}^{N} , which is called row space. The linear span of the columns of ${\rm A}$ is a subspace of \mathbb{R}^{M} , which is called column space. The row rank of A is the dimension of the row space and the column rank of A is the dimensional of the column space.

KORKARYKERKER POLO

Theorem 20

The row and column ranks of any matrix are equal.

Linear transformation

Definition 21

A and B are non-empty sets. A function $f : A \rightarrow B$ assigns a single point $f(a)$ in B to every point a in A.

> set A: domain set B: codomain f : function mapping

Definition 22

Let V, W be vector spaces, then $T:V\to W$ is linear if for all numbers a, b and for all vectors $v_1, v_2 \in V$

$$
T(a_1v_1 + a_2v_2) = a_1T(v_1) + a_2T(v_2)
$$

KORKARYKERKER POLO

and when $a_1 = a_2 = 0$, $T(0) = 0$.

Theorem 23

Matrices can be used to represent linear transformation from one finite dimensional vector space to another.

Proof.

Suppose v_1, \dots, v_N is a basis for V and w_1, \dots, w_M is a basis for W. For $v \in V$, there exist x_1, \dotsm, x_N such that $v = \sum_{n=1}^{N} x_n v_n$ and $y_1,\cdots,y_{\mathrm{M}}$ such that $\mathrm{T}(v)=\sum_{m=1}^M y_mw_m.$ Let $\mathrm{T}(v_n)=\sum_{m=1}^{\mathrm{M}}$ $a_{mn}w_m$, then $\text{T}(v) = \text{T}(\sum_{n=1}^\text{N}x_nv_n) = \sum_{n=1}^\text{N}x_n\text{T}(v_n) = \sum_{m=1}^\text{M}x_m$ $\sum_{n=1}^{N} a_{mn} x_n w_n = \sum_{m=1}^{N} y_m w_m.$ $_{n=1}^{N} a_{mn} x_n w_n = \sum_{m=1}^{M} y_m w_m.$ Therefore we have $y_m = \sum_{n=1}^{\text{N}} a_{mn} x_n \Longleftrightarrow y =$ A x , where $A = [a_{mn}].$

ALL AND A REAGENE MORE

Remark 24

If the $M \times N$ matrix A represents the linear transformation T and the $J \times M$ matrix B represents the linear transformation S, then the $J \times N$ matrix BA represents the linear transformation $S \circ T$.

KORKARYKERKER POLO

Remark 25

 $N \times N$ identity matrix I represents the identity function $id_V: V \rightarrow V$.

Definition 26

A function $f:\mathrm{V}\to \mathrm{W}$ is invertible if there exists $f^{-1}:\mathrm{W}\to \mathrm{V}$ such that $f\circ f^{-1}=id_{\mathrm{W}}$ and $f^{-1}\circ f=id_{\mathrm{V}}$, that is for all $w\in \mathrm{W}$, $f(f^{-1}(w)) = w$ and for all $v \in V$, $f(f^{-1}(v)) = v$.

Definition 27

A function $f: V \to W$ is onto, if for all $w \in W$, there exist a $v \in V$ such that $f(v) = w$.

Definition 28

A function $f: V \to W$ is one-to-one, if for every $v_1, v_2 \in V$, $f(v_1) \neq f(v_2)$ if $v_1 \neq v_2$.

KORKAR KERKER ST VOOR

Remark 29 $f: V \to W$ is invertible if and only if f is onto and one-to-one.

Theorem 30

If $\rm T: V \rightarrow W$ is an invertible linear transformation. Then $\rm T^{-1}$ is linear.

Proof.

Let $w_1, w_2 \in \mathrm{W}$ and $v_1 = \mathrm{T}^{-1}(w_1), v_2 = \mathrm{T}^{-1}(w_2)$, then

$$
T(c_1v_1 + c_2v_2) = c_1T(v_1) + c_2T(v_2) = c_1w_1 + c_2w_2
$$

$$
c_1 T^{-1}(w_1) + c_2 T^{-1}(w_2) = c_1 v_1 + c_2 v_2
$$

= $T^{-1} \circ T(c_1 v_1 + c_2 v_2) = T^{-1}(c_1 w_1 + c_2 w_2)$

 $(1, 1, 1)$ and $(1, 1, 1)$ and $(1, 1, 1)$ and $(1, 1, 1)$ and $(1, 1, 1)$

 \equiv 990

Theorem 31

Let $T: V \to V$ be a linear transformation, v_1, v_2, \dots, v_N is a basis for V, A : N \times N represents T with respect to v_1, v_2, \dots, v_N . Then T is invertible if and only if A is invertible and A^{-1} represents $\mathrm{T}^{-1}.$

Proposition 32

Let $T: V \to W$ be an invertible linear transformation, v_1,v_2,\dots,v_N are a basis for V if and only if $T(v_1), T(v_2), \cdots, T(v_N)$ is a basis for W.

Corollary

Let $T: V \to W$ be an invertible linear transformation and V is finite dimensional, then W is finite dimensional and

 $dimW = dimV$.

Definition 33 If $f : A \to B$ is a function, the range of f is $\{f(x) : x \in A\}$.

Definition 34

If $T: V \to W$ is a linear transformation, the kernel of T is $\{v \in V | T(v) = 0\}.$

Theorem 35

If $T: V \to W$ is a linear transformation, then the range of T is a subspace of W, the kernel of T is a subspace of V.

Definition 36

If $T: V \to W$ is a linear transformation, the rank of T is the dimension of the range of T and the nullity of T is the dimension of the kernel of T.

Theorem 37

Let $T: V \rightarrow W$ be a linear transformation. Then $rank T +$ nullity $T = dim(V)$

Proof.

Let $dim(V) = N$, v_1, v_2, \cdots, v_K is a basis for the null space of T, v_1, v_2, \cdots, v_N is an extension of v_1, v_2, \cdots, v_K to a basis for V. Then we want to show

$$
\mathrm{T}(v_{\mathrm{K}+1}), \mathrm{T}(v_{\mathrm{K}+2}), \cdots \mathrm{T}(v_{\mathrm{N}})
$$

KORKAR KERKER ST VOOR

is a basis for the range of T .

Proof.

Since $T(v_1) = \cdots = T(v_K) = 0$, $T(v_{K+1})$, $T(v_{K+2})$, $\cdots T(v_N)$ span the range of T. Want to show they are linearly independent. Suppose $\sum_{n=K+1}^{N} c_n \text{T}(v_n) = 0.$

$$
T(\sum_{n=K+1}^{N} c_n v_n) = \sum_{n=K+1}^{N} c_n T(v_n) = 0
$$

$$
\sum_{n=K+1}^{N} c_n v_n
$$
 belongs to the Kernel of T, then
\n
$$
\sum_{n=K+1}^{N} c_n v_n = \sum_{n=1}^{K} b_n v_n
$$

Therefore $\sum_{n={\rm K+1}}^{\rm N}c_nv_n-\sum_{n=1}^{\rm K}b_nv_n=0.$ Since $v_1,\cdots,v_{\rm N}$ is a basis for V, they are independent and

 $\frac{1}{1}$ $\frac{1}{1}$

$$
b_1 = b_2 = \dots = b_K = 0 = c_{K+1} = \dots = c_N
$$

T(v_{K+1}),..., T(v_N) are independent.

Theorem 38

Let $T: V \to W$ be a linear transformation and suppose $A: M \times N$ representing T with respect to the bases v_1, \dots, v_N and w_1, \dots, w_M . Then the rank of T equals column rank of A and nullity of T equals $N-$ column(row) rank of A

Singular and non-singular linear transformation

Definition 39

If $T: V \to W$ is a linear transformation, T is non-singular if the kernel of T is $\{0\}$. T is singular if it is not non-singular, i.e. if $T(v) = 0$ for some $v \neq 0$.

Remark 40

The linear transformation T is non-singular if and only if T is one-to-one.

Proof.

$$
T(v_1) = T(v_2) \Longleftrightarrow T(v_1 - v_2) = 0
$$

Singular and non-singular linear transformation

Lemma 41

If $T: V \to W$ is linear transformation. T is non-singular if and only $T(v_1), T(v_2), \cdots, T(v_N)$ are independent whenever v_1, v_2, \cdots , v_N are independent.

Theorem 42

 $T: V \to W$ is linear transformation, and $dim(V) = dim(W)$, then the following are equivalent

- T is invertible
- T is non-singular
- T is onto
- if v_1,v_2,\dots,v_N is a basis for V, then $\mathrm{T}(v_1)$, $\mathrm{T}(v_2)$, \dots , $\mathrm{T}(v_N)$ is a basis for W.
- there is basis v_1,v_2,\dots,v_N for V such that $T(v_1)$, $T(v_2)$, \dots , $T(v_N)$ is a basis for W.

KORKAR KERKER SAGA

The inner product and norm

Definition 43

The inner product on $\mathbb{R}^{{\rm N}}$ is the function $< x,y>$ or $\mathrm{x}\cdot\mathrm{y}$

$$
x \cdot y = \sum_{i=1}^{N} x_i y_i \qquad \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}
$$

Definition 44

$$
||x|| = \sqrt{x \cdot x}
$$
 length of x

Remark 45

- $\bullet\,$ if x,y are non-zero vectors in $\mathbb{R}^{\mathbb{N}}$ and if θ is the angle between x and y $\cos \theta = \frac{x \cdot y}{11 + 11 + 11}$ $||x|| \cdot ||y||$
- Cauchy-Schwarz inequality

$$
\left|\frac{x\cdot y}{||x||\cdot||y||}\right|\leq 1\Longleftrightarrow |x\cdot y|\leq ||x||\cdot||y||
$$

Orthonormal bases and orthogonal complement

Definition 46

A set of vector $v_1,~v_2,~\cdots,~v_{\mathrm{M}}$ in \mathbb{R}^{N} is orthogonal if $v_n\cdot v_m=0$ if $m \neq n$.

Theorem 47 Orthogonal non-zero vectors are independent.

Definition 48

A basis $v_1,\,\cdots,\,v_{\rm M}$ for a subspace ${\rm V}$ of $\mathbb{R}^{\rm N}$ is orthonormal if it is orthogonal and $||v_m|| = 1$ for all m.

KORKAR KERKER SAGA

Theorem 49

Every non-zero subspace V of \mathbb{R}^N has an orthonormal basis.(Gram-Schmidt process)

Orthonormal bases and orthogonal complement

Definition 50

If S is a subset of V, which is a subspace of \mathbb{R}^N , the orthogonal complement of in $\rm V$, denoted by $\rm S^{\perp}$

$$
S^{\perp} = \{ y \in V | y \cdot x = 0 \quad \text{for all} \quad x \in S \}
$$

Theorem 51

If W is a subspace of V and V is a subspace of \mathbb{R}^N , then

$$
dim(W) + dim(W^{\perp}) = dim(V)
$$

Orthogonal projection

Definition 52

Let $\mathrm W$ be a subspace of $\mathrm V$, which is a subspace of $\mathbb R^{\mathrm N}.$ An orthogonal projection $\pi : V \to W$ is a linear transformation such that $(V - \pi(V)) \in W^{\perp}$ for all $v \in V$ and $[V - \pi(V)] \cdot W = 0$ for all $w \in W$

Theorem 53

 $\mathrm W$ is subspace of $\mathrm V$, $\mathrm V$ subspace of $\mathbb R^{\mathrm N}$, there exists a unique orthogonal projection from V to W.