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Vector spaces

Some operations on vectors

• 1 · v = v for all v ∈ RN

• if c, c ∈ R and v ∈ RN, then (cc) · v = c(cv) for all
v ∈ RN and c, c ∈ R
• (v + w) + z = v + (w + z)

• c(v + w) = cv + cw

• (c + c)v = cv + cv

Definition 1
A vector space consists of a non-empty set V together with
operations of addition and multiplication by numbers, denoted by
v + w and cv where v and w in V and c is a number, and these
operations satisfy rules above with RN everywhere replaced by V.



Vector spaces

Definition 2
W is a subspace of a vector space V, if W is a subset of V and W
is itself is a vector space under the operations of addition and
multiplication by numbers defined on V.

v, w ∈ V
av + bw ∈ V?

Example 3

R2 is a vector space and {(v, v) ∈ R2|v + v =  is a subspace
of R2.



Linear independence and bases

Definition 4
If V is a vector space, the vector v ∈ V is a linear combination of
the vectors v, v, · · · , vN, if there are numbers c, c, · · · , cN such
that v = cv + cv + · · ·+ cNvN.

Definition 5
If v, v, · · · , vN ∈ V, their linear span is set of all linear
combinations of v, v, · · · , vN. The vectors v, v, · · · , vN span V,
if V is the linear span of v, v, · · · , vN.

Remark 6
The linear span of v, v, · · · , vN is a subspace of V and is the
smallest subspace containing v, v, · · · , vN. R2 is the linear span
of (0, 1) and (1, 0).



Linear independence and bases

Definition 7
The vectors v, v, · · · , vN ∈ V are linearly dependent if there exist
numbers c, c, · · · , cN, not all of which are zero, such that

cv + cv + · · ·+ cNvN = 0

The vectors v, v, · · · , vN ∈ V are linearly independent if they are
not linearly dependent.

Example 8

(1, 0, 0) (0, 1, 0) (0, 0, 1) independent
(1, 0, 0) (0, 1, 0) (1, 1, 0) dependent



Linear independence and bases

Definition 9
A basis for a vector space V is a set of independent vectors in V
that spans V.

Example 10

Let en = (0, · · · , 1, · · · , 0) ∈ RN where the 1 is in the n-th
position. Then e, e, · · · , eN is the standard basis of RN.

Theorem 11
If v, v, · · · , vM span a vector space V, then any independent set
of vectors in V has no more then M elements.

Definition 12
A vector space is finite dimensional, if it has a finite basis.



Linear Independence and Bases

Definition 13
The dimension of a finite dimensional vector space V, denoted by
dimV, is the number of vectors in a basis of V.

Corollary

If V is a vector space of dimension N, then any N vectors in V
that span V are independent and so are a basis of V.

Corollary

If V is a finite dimensional vector space, a basis for V is any
smallest or minimal set of vectors that span V.



Linear independence and bases

Lemma 14
If v, v, · · · , vM are independent vectors in V, and w ∈ V does
not belong to the span of v, v, · · · , vM. Then v, v, · · · , vM, w
are independent

Corollary

If V is a vector space of dimension N, then any n independent
vectors in V span V and so are a basis for V.

Theorem 15
If the vectors v, v, · · · , vN span the vector space V and
dimV > 0, then some subset of v, v, · · · , vN form a basis for V.



Linear independent and bases

Theorem 16
If V is finite dimensional, non-zero vector space, any largest or
maximal set of independent vectors in V is a basis for V.

Application

This theorem suggests a way to construct a basis for a non-zero
vector space V.

Theorem 17
Let W be a non-zero subspace of a finite dimensional vector space
V such that W 6= V, then dimW < dimV.

Theorem 18
If v, v, · · · , vN is a basis of the vector space V, and v ∈ V, then
the numbers c, c, · · · , cN such that v =

∑N
n=1 cnvn are unique.



The row and column ranks of a matrix

Definition 19
Let A be an M×N matrix. The linear span of the rows of A is a
subspace of RN, which is called row space. The linear span of the
columns of A is a subspace of RM, which is called column space.
The row rank of A is the dimension of the row space and the
column rank of A is the dimensional of the column space.

Theorem 20
The row and column ranks of any matrix are equal.



Linear transformation

Definition 21
A and B are non-empty sets. A function f : A→ B assigns a
single point f(a) in B to every point a in A.

set A: domain
set B: codomain

f : function mapping

Definition 22
Let V,W be vector spaces, then T : V→W is linear if for all
numbers a, b and for all vectors v, v ∈ V

T(av + av) = aT(v) + aT(v)

and when a = a = , T(0) = 0.



Invertible matrices and linear transformation

Theorem 23
Matrices can be used to represent linear transformation from one
finite dimensional vector space to another.

Proof.
Suppose v,· · · ,vN is a basis for V and w,· · · ,wM is a basis for W.
For v ∈ V, there exist x,· · · ,xN such that v =

∑N
n=1 xnvn and

y,· · · ,yM such that T(v) =
∑M

m= ymwm. Let T(vn) =
∑M

m=

amnwm, then T(v) = T(
∑N

n=1 xnvn) =
∑N

n= xnT(vn) =
∑M

m=∑N
n= amnxnwn =

∑M
m= ymwm.

Therefore we have ym =
∑N

n= amnxn ⇐⇒ y =Ax, where
A = [amn].



Invertible matrices and linear transformation

Remark 24
If the M×N matrix A represents the linear transformation T and
the J×M matrix B represents the linear transformation S, then
the J×N matrix BA represents the linear transformation S ◦ T.

Remark 25
N×N identity matrix I represents the identity function
idV : V→ V.



Invertible matrices and linear transformation

Definition 26
A function f : V→W is invertible if there exists f−1 : W→ V
such that f ◦ f−1 = idW and f−1 ◦ f = idV, that is for all w ∈W,
f(f−(w)) = w and for all v ∈ V, f(f−(v)) = v .

Definition 27
A function f : V→W is onto, if for all w ∈W, there exist a
v ∈ V such that f(v) = w.

Definition 28
A function f : V→W is one-to-one, if for every v, v ∈ V,
f(v1) 6= f(v2) if v 6= v.



Invertible matrices and linear transformation

Remark 29
f : V→W is invertible if and only if f is onto and one-to-one.

Theorem 30
If T : V→W is an invertible linear transformation. Then T−1 is
linear.

Proof.
Let w, w ∈W and v = T−1(w), v = T−1(w), then

T(cv + cv) = cT(v) + cT(v) = cw + cw

cT
−1(w) + cT

−1(w) = c1v1 + c2v2

= T−1 ◦ T (c1v1 + c2v2) = T−1(cw + cw)



Invertible matrices and linear transformation

Theorem 31
Let T : V→ V be a linear transformation, v, v, · · · , vN is a basis
for V, A : N×N represents T with respect to v, v, · · · , vN.
Then T is invertible if and only if A is invertible and A−1

represents T−1.

Proposition 32

Let T : V→W be an invertible linear transformation, v,v,· · · ,vN
are a basis for V if and only if T(v),T(v),· · · ,T(vN) is a basis for
W.

Corollary

Let T : V→W be an invertible linear transformation and V is
finite dimensional, then W is finite dimensional and

dimW = dimV.



The range, rank, kernel and nullity of linear transformation

Definition 33
If f : A→ B is a function, the range of f is {f(x) : x ∈A}.

Definition 34
If T : V→W is a linear transformation, the kernel of T is
{v ∈ V|T(v) = 0}.

Theorem 35
If T : V→W is a linear transformation, then the range of T is a
subspace of W, the kernel of T is a subspace of V.

Definition 36
If T : V→W is a linear transformation, the rank of T is the
dimension of the range of T and the nullity of T is the dimension
of the kernel of T.



The range, rank, kernel and nullity of linear transformation

Theorem 37
Let T : V→W be a linear transformation. Then rank T +
nullity T = dim(V)

Proof.
Let dim(V) = N, v, v, · · · , vK is a basis for the null space of T,
v, v, · · · , vN is an extension of v, v, · · · , vK to a basis for V.
Then we want to show

T(vK+1),T(vK+2), · · ·T(vN)

is a basis for the range of T.



The range, rank, kernel and nullity of linear transformation

Proof.
Since T(v) = · · · = T(vK) = 0, T(vK+1),T(vK+2), · · ·T(vN)
span the range of T. Want to show they are linearly independent.
Suppose

∑N
n=K+1 cnT(vn) = 0.

T(
N∑

n=K+1

cnvn) =
N∑

n=K+1

cnT(vn) = 0

∑N
n=K+1 cnvn belongs to the kernel of T, then

N∑
n=K+1

cnvn =
K∑

n=1

bnvn

Therefore
∑N

n=K+1 cnvn −
∑K

n=1 bnvn = 0. Since v, · · · , vN is a
basis for V, they are independent and

b = b = · · · = bK = 0 = cK+1 = · · · = cN
T(vK+1), · · · ,T(vN) are independent.



The range, rank, kernel and nullity of linear transformation

Theorem 38
Let T : V→W be a linear transformation and suppose A : M×N
representing T with respect to the bases v, · · · , vN and
w,· · · ,wM. Then the rank of T equals column rank of A and
nullity of T equals N− column(row) rank of A



Singular and non-singular linear transformation

Definition 39
If T : V→W is a linear transformation, T is non-singular if the
kernel of T is {0}. T is singular if it is not non-singular, i.e. if
T(v) = 0 for some v 6= 0.

Remark 40
The linear transformation T is non-singular if and only if T is
one-to-one.

Proof.

T(v) = T(v)⇐⇒ T(v − v) = 0



Singular and non-singular linear transformation

Lemma 41
If T : V→W is linear transformation. T is non-singular if and
only T(v),T(v),· · · ,T(vN) are independent whenever v, v, · · · ,
vN are independent.

Theorem 42
T : V→W is linear transformation, and dim(V) = dim(W), then
the following are equivalent

• T is invertible

• T is non-singular

• T is onto

• if v,v,· · · ,vN is a basis for V, then T(v), T(v), · · · , T(vN)
is a basis for W.

• there is basis v,v,· · · ,vN for V such that T(v), T(v), · · · ,
T(vN) is a basis for W.



The inner product and norm

Definition 43
The inner product on RN is the function < x, y > or x · y

x · y =
N∑
i=1

xiyi RN × RN → R

Definition 44

||x|| =
√
x · x length of x

Remark 45
• if x, y are non-zero vectors in RN and if θ is the angle

between x and y
cos θ =

x · y
||x|| · ||y||

• Cauchy-Schwarz inequality∣∣∣∣ x · y
||x|| · ||y||

∣∣∣∣ ≤ 1⇐⇒ |x · y| ≤ ||x|| · ||y||



Orthonormal bases and orthogonal complement

Definition 46
A set of vector v, v, · · · , vM in RN is orthogonal if vn · vm = 0 if
m 6= n.

Theorem 47
Orthogonal non-zero vectors are independent.

Definition 48
A basis v, · · · , vM for a subspace V of RN is orthonormal if it is
orthogonal and ||vm|| = 1 for all m.

Theorem 49
Every non-zero subspace V of RN has an orthonormal
basis.(Gram-Schmidt process)



Orthonormal bases and orthogonal complement

Definition 50
If S is a subset of V, which is a subspace of RN, the orthogonal
complement of in V, denoted by S⊥

S⊥ = {y ∈ V|y · x = 0 for all x ∈ S}

Theorem 51
If W is a subspace of V and V is a subspace of RN, then

dim(W) + dim(W⊥) = dim(V)



Orthogonal projection

Definition 52
Let W be a subspace of V, which is a subspace of RN. An
orthogonal projection π : V→W is a linear transformation such
that (V − π(V)) ∈W⊥ for all v ∈ V and [V − π(V)] ·W = 0 for
all w ∈W.

Theorem 53
W is subspace of V, V subspace of RN, there exists a unique
orthogonal projection from V to W.


