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Vector spaces

Some operations on vectors

e 1.9v=wforallve Ry

® if ¢;,c, € R and v € Ry, then (¢1¢5) - v = ¢,(cov) for all
veRNand ¢, €R

e (vtw)+z=v+(w+2)

* c(v+w)=cv+cw

® (¢; +¢)v=cv+cov

Definition 1

A vector space consists of a non-empty set V together with
operations of addition and multiplication by numbers, denoted by
v+ w and cv where v and w in V and ¢ is a number, and these
operations satisfy rules above with RN everywhere replaced by V.



Vector spaces

Definition 2

W is a subspace of a vector space V, if W is a subset of V and W
is itself is a vector space under the operations of addition and
multiplication by numbers defined on V.

v,w eV
av+bw e V?

Example 3

R? is a vector space and {(v,,v,) € R?|v, + v, = 0 is a subspace
of R2.



Linear independence and bases

Definition 4
If V is a vector space, the vector v € V is a linear combination of
the vectors v, v,, - -+ , vy, if there are numbers ¢, ¢, - - , ¢y such

that v = ¢, v, + coUs + - - + CNUN.

Definition 5

If vi,v,,--- ,vN €V, their linear span is set of all linear
combinations of vy, v,, -+ ,uxn. The vectors vy, v,,- -+, vy span V,
if V is the linear span of vy, vy, -+, vN.

Remark 6

The linear span of vy, vy, ,vN IS @ subspace of V and is the
smallest subspace containing v,,vs,--- ,vy. R? is the linear span

of (0,1) and (1,0).



Linear independence and bases

Definition 7
The vectors v,,v,,--- ,vy € V are linearly dependent if there exist
numbers c,, o, - - -, ¢y, not all of which are zero, such that
C1U; + CoUs + -+ enuny =0
The vectors vy, v,, -+ ,vn € V are linearly independent if they are

not linearly dependent.

Example 8

(1,0,0) (0,1,0) (0,0,1) independent
(1,0,0) (0,1,0) (1,1,0) dependent



Linear independence and bases

Definition 9
A basis for a vector space V is a set of independent vectors in V
that spans V.

Example 10

Let e, = (0,---,1,---,0) € RN where the 1 is in the n-th
position. Then e,,e,, - , ey is the standard basis of RN,
Theorem 11

If vi,v,,--- v SPan a vector space V, then any independent set

of vectors in V has no more then M elements.

Definition 12
A vector space is finite dimensional, if it has a finite basis.



Linear Independence and Bases

Definition 13
The dimension of a finite dimensional vector space V, denoted by
dimV, is the number of vectors in a basis of V.

Corollary
If V is a vector space of dimension N, then any N vectors in V
that span V are independent and so are a basis of V.

Corollary
If V is a finite dimensional vector space, a basis for V is any
smallest or minimal set of vectors that span V.



Linear independence and bases

Lemma 14
If vi,v,,- -+ , v\ are independent vectors in V, and w € V does
not belong to the span of vy, vy, ,vy. Then vy, vy, -+ Uy, W

are independent

Corollary

If V is a vector space of dimension N, then any n independent
vectors in V span V and so are a basis for V.

Theorem 15
If the vectors vy, v,, -+ , vy Span the vector space V and
dimV > 0, then some subset of v,,v,,- - , vy form a basis for V.



Linear independent and bases

Theorem 16
If V is finite dimensional, non-zero vector space, any largest or
maximal set of independent vectors in V is a basis for V.

Application
This theorem suggests a way to construct a basis for a non-zero
vector space V.

Theorem 17
Let W be a non-zero subspace of a finite dimensional vector space
V such that W # V, then dimW < dimV.

Theorem 18
Ifvy,vy,- -+ ,uN IS @ basis of the vector space V, and v € V, then
the numbers ¢y, ¢y, - -+ ,cN Such that v = 2521 CnUp, are unique.



The row and column ranks of a matrix

Definition 19

Let A be an M x N matrix. The linear span of the rows of A is a
subspace of RN, which is called row space. The linear span of the
columns of A is a subspace of RM, which is called column space.
The row rank of A is the dimension of the row space and the
column rank of A is the dimensional of the column space.

Theorem 20

The row and column ranks of any matrix are equal.



Linear transformation

Definition 21
A and B are non-empty sets. A function f: A — B assigns a
single point f(a) in B to every point a in A.

set A: domain
set B: codomain
f: function mapping

Definition 22
Let V, W be vector spaces, then T : V — W is linear if for all
numbers a, b and for all vectors v,,v, € V

T(a,v, + ayv,) = a, T(vy) + a.T(v,)

and when a, = a, =0, T(0) = 0.



Invertible matrices and linear transformation

Theorem 23
Matrices can be used to represent linear transformation from one

finite dimensional vector space to another.

Proof.

Suppose v,,- - -,vN is a basis for V and w,,- - - ,wy is a basis for W.
For v € V, there exist z,,- - - ,xN such that v = 25:1 TpUy and

Y1, -+, ym such that T(v) = Z%:l YmWnm,. Let T(vy,) = Z%:l
i Wy, then T(v) = T(XN_ zp0,) = SN 2, T(v,) = M
Zij:l A T Wy, = Zi\s:l Ym W, .

Therefore we have y,,, = 25:1 AmnTn <= y =Ax, where

A = [amn]- O



Invertible matrices and linear transformation

Remark 24
If the M x N matrix A represents the linear transformation T and

the J x M matrix B represents the linear transformation S, then
the J x N matrix BA represents the linear transformation S o T.

Remark 25
N x N identity matrix 1 represents the identity function

’idv:V*)V.



Invertible matrices and linear transformation

Definition 26

A function f : V. — W is invertible if there exists f~1: W — V
such that fo f~! =idw and f~lo f =idy, thatis for all w € W,
f(f~"(w))=wand forallv eV, f(f~*(v))=v.

Definition 27
A function f : V — W is onto, if for all w € W, there exist a
v € V such that f(v) = w.

Definition 28
A function f:V — W is one-to-one, if for every v,,v, € V,

f(v1) # f(ve) if v, # v,.



Invertible matrices and linear transformation

Remark 29
f V.= W is invertible if and only if f is onto and one-to-one.

Theorem 30
If T :V — W is an invertible linear transformation. Then T~ is

linear.

Proof.
Let w,,w, € W and v, = T (w,), v, = T (w,), then

T(civ, + cov,) = . T(vy) + . T(v,) = cywy + cow,

T w,) + T Hw,) = av + cv

=T1lo T(C1V1 + C2V2) = T71(01UJ1 + Czwz)



Invertible matrices and linear transformation

Theorem 31
Let T : V — V be a linear transformation, vy, v,,--- ,vy IS a basis
for V, A : N x N represents T with respect to v,,v,,- -+ ,Uy.

Then T is invertible if and only if A is invertible and A~1
represents T~

Proposition 32

Let T : V. — W be an invertible linear transformation, v,,v5, - - ,UN
are a basis for V if and only if T(v,),T(v,), -+, T(vN) is a basis for
W.

Corollary
Let T : V — W be an invertible linear transformation and V is
finite dimensional, then W is finite dimensional and

dimW = dimV.



The range, rank, kernel and nullity of linear transformation

Definition 33
If f: A — B is a function, the range of f is {f(z): x €A}.

Definition 34
If T:V — W is a linear transformation, the kernel of T is

{v e V|T(v) = 0}.

Theorem 35
If T :V — W s a linear transformation, then the range of T is a
subspace of W, the kernel of T is a subspace of V.

Definition 36

If T:V — W is a linear transformation, the rank of T is the
dimension of the range of T and the nullity of T is the dimension
of the kernel of T.



The range, rank, kernel and nullity of linear transformation

Theorem 37
Let T : V. — W be a linear transformation. Then rank T +
nullity T = dim(V)

Proof.
Let dim(V) =N, vy, v,,- -+ , vk is a basis for the null space of T,
Uy, Vs, -+ ,UN IS an extension of v, v,, -+ , vk to a basis for V.

Then we want to show

T(vk+1), T(vk+2), - - T(vn)

is a basis for the range of T. O



The range, rank, kernel and nullity of linear transformation

Proof.
Since T(v,) = --- = T(vk) =0, T(vk41), T(vk+2), - - T(vN)
span the range of T. Want to show they are linearly independent.

Suppose Z,’LKH e T(vy) = 0.

N N
T( Z CnUp) = Z cnT(v,) =0
n=K+1 n=K+1

Z}LKH ¢nUn belongs to the kernel of T, then
N

K
§ CnUn = g bpvy,
n=1

n=K+1
N K . . )
Therefore > "~ 1.1 cnvn — > g byvp = 0. Since vy, --- vy is a
basis for V, they are independent and
b1:b2::bK2026K+1::CN

OJ

T(vk+t1), -+, T(vn) are independent.



The range, rank, kernel and nullity of linear transformation

Theorem 38

Let T : V — W be a linear transformation and suppose A : M x N
representing 'T' with respect to the bases v,,--- ,vyn and

wy, -+, wm. Then the rank of T equals column rank of A and
nullity of T equals N— column(row) rank of A



Singular and non-singular linear transformation

Definition 39

If T:V — W is a linear transformation, T is non-singular if the
kernel of T is {0}. T is singular if it is not non-singular, i.e. if
T(v) = 0 for some v # 0.

Remark 40
The linear transformation T is non-singular if and only if T is
one-to-one.

Proof.

T(v,) = T(vs) <= T(v, —v5) =0



Singular and non-singular linear transformation

Lemma 41
If T :V — W s linear transformation. 'T' is non-singular if and
only T(v,),T(vz), -, T(vN) are independent whenever vy, vy, - - -,
vN are independent.
Theorem 42
T :V — W is linear transformation, and dim(V) = dim(W), then
the following are equivalent

® T js invertible

® T s non-singular

e T js onto

® fvy,0,,-+,UN is @ basis for V, then T(v,), T(v,), ---, T(vN)

is a basis for W.

there is basis v,,v,, - - ,un for V such that T(v,), T(vs), - - -,
T(vN) is a basis for W.



The inner product and norm

Definition 43
The inner product on RN is the function < z,y > or x -y

N
xy:szyl RY x RN -5 R
=1

Definition 44

l|lz]| = V& - x length of z

Remark 45

e f x,y are non-zero vectors in RN and if § is the angle
between x and y Ty

cosf = ————
][ - [yl|

® Cauchy-Schwarz inequality

<1 oyl <] - [lyll

vy
]| - [yl



Orthonormal bases and orthogonal complement

Definition 46
A set of vector vy, Vs, -+, vy in RN is orthogonal if v, - v, = 0 if
m #n.

Theorem 47
Orthogonal non-zero vectors are independent.

Definition 48
A basis v,, - -+, vy for a subspace V of RN is orthonormal if it is
orthogonal and ||vy,|| = 1 for all m.

Theorem 49
Every non-zero subspace V of RN has an orthonormal
basis.(Gram-Schmidt process)



Orthonormal bases and orthogonal complement

Definition 50
If S is a subset of V, which is a subspace of RN, the orthogonal
complement of in V, denoted by S+

St={yeVly-z=0 forall zc8S}
Theorem 51
If W is a subspace of V and V is a subspace of RN, then

dim(W) + dim(W*) = dim(V)



Orthogonal projection

Definition 52

Let W be a subspace of V, which is a subspace of RN. An
orthogonal projection 7 : V — W is a linear transformation such
that (V —m(V)) € Wt forallv € Vand [V — 7(V)] - W = 0 for
allwe W.

Theorem 53
W is subspace of V, V subspace of RN, there exists a unique
orthogonal projection from V to W.



