LINEAR ALGEBRA

Kuangyu Wen

Huazhong University of Science and Technology

July 23, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Contents

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Eigen decomposition
- Singular value decomposition
- QR decomposition
- LU decomposition
- Cholesky decomposition

Eigenvalues and eigenvectors

Definition 1 If a non-zero vector x satisfies

 $Ax = \lambda x$ for some $\lambda \in \mathbb{R}$,

then the vector \boldsymbol{x} is called eigenvector, while the corresponding $\boldsymbol{\lambda}$ is called eigenvalue.

Definition 2

The characteristic equation of a square matrix A is

$$det(\mathbf{A} - \lambda \mathbf{I}) = \mathbf{0}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Eigenvalues and eigenvectors

Example 3

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
$$|A - \lambda I| = (1 - \lambda)(3 - \lambda)$$
$$\lambda_1 = 1 \quad \lambda_2 = 3$$

Theorem 4

Suppose q_1, q_2, \dots, q_m are eigenvectors of A with eigenvalues λ_1 , $\lambda_2, \dots, \lambda_m$, respectively. Assume $\lambda_i \neq \lambda_j$ if $i \neq j$. Then q_1, q_2, \dots, q_m are independent.

Corollary

Let \mathbb{L} be a n-dimensional linear space, and A be a linear operator in \mathbb{L} with eigenvectors e_1, e_2, \dots, e_n and with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. Then e_1, e_2, \dots, e_n forms a basis in \mathbb{L} .

Eigenvalues and eigenvectors

Some useful properties

Let λ_i and h_i , $i = 1 \cdots k$, denote the k eigenvalues and eigenvectors of a square matrix A. Let Λ be a diagonal matrix with eigenvalues in the diagonal, and let $H = \begin{bmatrix} h_1 & \cdots & h_k \end{bmatrix}$.

•
$$det(\mathbf{A}) = \prod_{i=1}^k \lambda_i$$
.

•
$$tr(\mathbf{A}) = \sum_{i=1}^{k} \lambda_i$$
.

- A is non-singular \iff all its eigenvalues are non-zero.
- If A has distinct eigenvalues, then there exist a non-singular matrix P such that P⁻¹ΛP = A.
- If A is symmetric, its eigenvalues are all real, then ${\rm A}={\rm H}\Lambda{\rm H}'$ and ${\rm H}'{\rm A}{\rm H}=\Lambda.$
- λ_1^{-1} , λ_2^{-1} , \cdots , λ_k^{-1} are the eigenvalues of A^{-1} .

Note that $\mathrm{A}=\mathrm{H}\Lambda\mathrm{H}'$ is called spectral decomposition.

Spectral decomposition

Let A be a $m \times m$ real symmetric matrix. Then there exists an orthogonal matrix P such that $P'AP = \Lambda$ or $A = P\Lambda P'$ where Λ is a diagonal matrix.

Singular value decomposition

For any $A: m \times n$, we have

 $\mathbf{A}=\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{'}$, where

 ${\rm U}$ is an orthogonal matrix whose columns are the eigenvectors of ${\rm AA}^{'}.$

V is an orthogonal matrix whose columns are the eigenvectors of $A^{\prime}A.$

 Σ is an all zero matrix except for the first r diagonal elements

$$\sigma_i = \Sigma_{ii} \quad i = 1 \cdots r$$

that are the square root of the eigenvalues of AA' or A'A.

QR decomposition

For an $m\times n$ matrix ${\bf A}$ whose columns are linearly independent, we have

$$A = QR$$

where Q is an $m \times n$ matrix whose columns form an orthonormal basis for the column space of A. R is an non-singular $n \times n$ upper triangular matrix.

Example 5

If
$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$
, by Gram-Schmidt process, we have
 $u_{k+1} = a_{k+1} - a_{k+1} \cdot e_1 \cdot e_1 - \cdots + a_{k+1} \cdot e_k \cdot e_k \qquad e_{k+1} = \frac{u_{k+1}}{||u_{k+1}||}$

$$A = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix} \begin{bmatrix} a_1e_1 & a_2e_1 & \cdots & a_ne_1 \\ & a_2e_2 & \cdots & a_ne_2 \\ & & \ddots & \vdots \\ & & & & a_ne_n \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

LU decomposition

Let A be an $m \times m$ non-singular matrix. Then there exist L and U such that L is a lower triangular matrix and U is a upper triangular matrix and A = LU. A \longrightarrow U

$$\mathbf{E}_k \cdots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A} = \mathbf{U}$$

If each such elementary matrix E_i is a lower triangular matrix, we can show that E_i^{-1} is also lower triangular.

$$\mathbf{A} = \mathbf{E}_1^{-1} \mathbf{E}_2^{-1} \cdots \mathbf{E}_k^{-1} \mathbf{U}$$
$$\mathbf{A} = \mathbf{L} \mathbf{U}$$

- If A is non-singular, for each L, the upper triangular matrix U is unique.
- But an LU decomposition is not unique.
- To find out the unique LU decomposition, it is necessary to put some restrictions on L and U. For example, all diagonal entries of L are 1.

Cholesky decomposition

If A is an $n\times n$ real symmetric positive definite matrix, then there exists a unique lower triangular matrix G with positive diagonal elements such that $A=G\cdot G'$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●